A technique which can be considered similar to ours has been proposed by Deudon [50], which consists of computing a Wasserstein tensor as an element-wise Wasserstein distance between the independent distributions corresponding to the two sentences, concatenated to the Hadamard product of the means. ...
Now we can fit very large models into a single GPU, but the training might still be very slow. The simplest strategy in this scenario is data parallelism: we replicate the same training setup into separate GPUs and pass different batches to each GPU. With this, you can parallelize the ...
Now we can fit very large models into a single GPU, but the training might still be very slow. The simplest strategy in this scenario is data parallelism: we replicate the same training setup into separate GPUs and pass different batches to each GPU. With this, you can parallelize the for...
Now we can fit very large models into a single GPU, but the training might still be very slow. The simplest strategy in this scenario is data parallelism: we replicate the same training setup into separate GPUs and pass different batches to each GPU. With this, you can parallelize th...
Now we can fit very large models into a single GPU, but the training might still be very slow. The simplest strategy in this scenario is data parallelism: we replicate the same training setup into separate GPUs and pass different batches to each GPU. With this, you can parallelize the ...
Now we can fit very large models into a single GPU, but the training might still be very slow. The simplest strategy in this scenario is data parallelism: we replicate the same training setup into separate GPUs and pass different batches to each GPU. With this, you can parallelize ...
Now we can fit very large models into a single GPU, but the training might still be very slow. The simplest strategy in this scenario is data parallelism: we replicate the same training setup into separate GPUs and pass different batches to each GPU. With this, you can parallelize t...
Now we can fit very large models into a single GPU, but the training might still be very slow. The simplest strategy in this scenario is data parallelism: we replicate the same training setup into separate GPUs and pass different batches to each GPU. With this, you can parallelize th...
Now we can fit very large models into a single GPU, but the training might still be very slow. The simplest strategy in this scenario is data parallelism: we replicate the same training setup into separate GPUs and pass different batches to each GPU. With this, you can parallelize the...
Now we can fit very large models into a single GPU, but the training might still be very slow. The simplest strategy in this scenario is data parallelism: we replicate the same training setup into separate GPUs and pass different batches to each GPU. With this, you can parallelize the...