带有“Karras”标签的采样器使用 Karras 文章中推荐的noise schedule。和传统的采样器相比,你会发现噪声步长在接近尾声时变小了。这样的变化据说可以提高图像的质量。 卡拉斯噪音时间表 DDIM 和 PLMS DDIM(去噪扩散隐式模型)和 PLMS(伪线性多步法)是原始 Stable Diffusion v1 附带的采样器。DDIM是首批为扩散模型设计...
DDIM (Denoising Diffusion Implicit Model) 和 PLMS (Pseudo Linear Multi-Step method) 是SDv1带的两种采样器。DDIM 是第一批转为扩散模型设计的采样器之一,而 PLMS 是 DDIM 更新、更快的版本。 这两种采样器现在看来已经有些过时了,一般不再广泛使用。 DPM和DPM++ DPM (Diffusion probabilistic model solver) ...
后向扩散时,Stable Diffusion 先会生成一张完全的噪音图,然后根据提示词的语义,通过不断的采样来去除噪音图中不符合语义的噪音,而采样器就是去除噪音用的算法程序。 采样步数 在Stable Diffusion 中采样器和采样步数有着紧密的关系,在采样的每一步,采样器会按照一个噪音计划表控制噪音的水平,在第一步噪音水平最高...
带有Karras字样的采样器,最大的特色是使用了Karras论文中建议的噪音计划表。主要的表现在于噪点步长在接近尾声时会更小,有助于图像的质量提升。 默认方法与Karras采样的对比 DDIM与PLMS(已过时,不再使用) DDIM(去噪扩散隐式模型)和PLMS(伪线性多步方法)是伴随Stable Diffusion v1提出的采样方法,DDIM也是最早被用于扩...
DPM (Diffusion probabilistic model solver,扩散概率模型求解器)是2022年发布的为扩散模型而设计的一系列采样器。 DPM++是DPM的改进版。 DPM2是二阶版本的DPM,更准确,但更慢。 DPM++SDE和DPM++SDE Karras有与祖先采样器相同的缺点,不会收敛,而且采样步数会显著影响图像内容。
Stable Diffusion的工作原理是通过不同的算法,负责从稳定扩散中使用的模型获取样本,并将噪声预测器估算出的噪声应用于这个样本上。 另一个算法"噪声调度器"则负责控制去噪的程度,决定每一步去除多少噪声,以确保整个过程既高效又精准。有些算法能够迅速收敛,非常适用于快速验证创意和想法。而其他一些算法可能需要更长的...
在使用Stable Diffusion进行图像生成时,选择合适的采样器是非常重要的。不同的采样器会带来不同的效果和速度。下面我们来介绍一些常用的采样器及其特点:1. Euler Euler采样器是最简单、最快速的一种选择。它可以在较短的时间内生成图像,但可能缺少多样性。如果你对运行时间有严格的要求,或者你只需要一个大致的...
Stable Diffusion的流程包括前向扩散和后向去噪。在Latent Space生成随机图像后,噪声预测器逐步减去预测的噪声。每一步的采样,无论是Euler的一步到位,还是Heun的逐步精确,都是为了在去噪过程中逐渐呈现清晰图像。而Noise Schedule则决定了降噪的节奏。采样器种类与特性 Euler和Heun采样器属于一阶,Euler更...