Stable Diffusion和GAN(Generative Adversarial Network)是两种用于生成图像的不同方法。 Stable Diffusion是一种基于扩散过程的图像生成方法,它通过逐步增加噪声来生成图像。该方法利用可逆的随机过程来逐渐改变噪声信号,从而生成逼真的图像。Stable Diffusion方法的优点是可以生成高质量、高分辨率的图像,并且具有稳定的训练过程...
Stable Diffusion(SD)模型和GAN模型一样,是生成式模型,了解GAN模型的朋友都知道,生成式模型能够生成和训练集分布相似的输出结果(拟合数据分布),在计算机视觉领域是图片,在自然语言处理领域是文字。 下面是主流生成式模型各自的生成逻辑: 生成式模型的主流架构 在这里拿GAN详细展开讲讲,由于篇幅原因,VAE和Flow-based mo...
3. 扩散(diffusion)模型 扩散模型也就是我们目前大多数文生图模型所采用的技术。 扩散模型也分为两个过程,一个是前向过程,通过向原始数据不断加入高斯噪声来破坏训练数据,最终加噪声到一定步数之后,原始数据信息就完全被破坏,无限接近与一个纯噪声。另外一个过程是反向过程,通过深度网络来去噪,来学习恢复数据。 4....
在 Stable Diffusion 中,GFPGAN、ESRGAN 和 RealESRGAN 都是与图像生成和增强相关的功能,它们各自有不...
2022 年 7 月 29 日,由 Stability.AI 公司研发的 Stable Diffusion 的 AI 生成器开始内测。人们发现用它生成的 AI 绘画作品质量堪比 DALL·E 2,而且限制更少。Stable Diffusion 的内测共分 4 波,邀请了 15000 名用户参与,仅仅十天后,就有一千七百万张图片通过它生成。最关键的是,Stable Diffusion 的开发...
首先,该研究通过保留一组滤波器(filter)并采用特定于样本的线性组合来有效地扩展生成器的容量。该研究还采用了扩散上下文(diffusion context)中常用的几种技术,并证实它们为 GAN 带来了类似的好处。例如,将自注意力(仅图像)和交叉注意力(图像 - 文本)与卷积层交织在一起可以提高模型性能。
继之而来的,是2021年五月OpenAI所发布的“Classifier Guidance”(亦被称为Guided Diffusion)。这篇论文提出了一项重要的策略,即通过基于分类器的引导来指导扩散模型生成图像。借助其他多项改进,扩散模型首次成功击败了生成领域的巨头“GAN”,同时也为OpenAI的DALLE-2(一个图像和文本生成模型)的发布奠定了基础。而...
“现在Stable Diffusion已经能重建大脑视觉信号了!”就在昨晚,一个听起来细思极恐的“AI读脑术”研究,在网上掀起轩然大波:这项研究声称,只需用fMRI(功能磁共振成像技术,相比sMRI更关注功能性信息,如脑皮层激活情况等)扫描大脑特定部位获取信号,AI就能重建出我们看到的图像!例如这是一系列人眼看到的图像,...
Stable Diffusion 是一个深度学习技术,主要用于图像生成和图像增强任务。它的核心思想是通过稳定的训练过程来生成高质量的图像,同时提供了一种用于生成和增强图像的框架。在 Stable Diffusion 中,GFPGAN、ESRGAN 和 RealESRGAN 都是与图像生成和增强相关的功能,它们各自有不同的应用和特点。
1. 图像去噪:Diffusion技术可以用于图像去噪。原理是通过模拟扩散过程,平滑图像中的噪声,同时保留图像的主要特征。这种方法通常被称为非线性扩散滤波或各向异性扩散滤波。 2. 图像分割:Diffusion技术也可以用于图像分割。通过模拟扩散过程,我们可以得到图像的区域信息,然后根据这些信息将图像分割成不同的区域。