Stable Diffusion原来的名字叫“Latent Diffusion Model”(LDM),很明显就是扩散过程发生隐空间中(latent space),其实就是对图片做了压缩,这也是Stable Diffusion比Diffusion速度快的原因。 自编码器(Autoencoder) Stable Diffusion会先训练一个自编码器,来学习将图像压缩成低维表示。 通过训练好的编码器 E ,可以将原始...
这个超分过程中, 模型借助了StableDiffusion的先验知识,即从纯噪声(zT)中逐步生成细节的能力,因而有较好的超分效果。 time-aware encoder StableSR算法设计了一个time-aware encoder, time-aware encoder 的结构和Denoising U-Net的结构类似,即time-aware 的含义是encoder的输入除了LR的latent特征外,还有时间t, time...
decoder我们放在第二阶段采样阶段说,我们所使用的stablediffusion webui画图通常是在采样阶段,至于训练阶段,目前我们大多数普通人是根本完成不了的,它所需要训练时间应该可以用GPUyear来计量,(单V100的GPU要一年时间),如果你有100张卡,应该...
然后采用的系数来rescale latent,这样就尽量保证latent的标准差接近1(防止扩散过程的SNR较高,影响生成效果,具体见latent diffusion论文的D1部分讨论),然后扩散模型也是应用在rescaling的latent上,在解码时只需要将生成的latent除以,然后再送入autoencoder的
而 Stable Diffusion 采用一个预训练好的 Clip text encoder 来编码 text,预训练的 text model 往往要优于从零开始训练的模型。 训练尺寸: Latent Diffusion 是在 256x256 分辨率数据集上训练,而 Stable Diffusion 是先在256x256分辨率上预训练,然后再在 512x512 分辨率上微调优化的,而现在 XL 版本则采用了 L...
大模型更偏向工程领域,对于stable diffusion这种大模型,普通人以个人或者以小型实验室为单位是很难从规模上做出突破的,这其实也是好事,说明AI领域正在一步步走向成熟。事实上,以Google为代表的大公司还是无私慷慨的,将自己训练出的模型直接免费开源,还提供了Google Colab实验平台,国内的百度也对标开发了AI Studio平台,...
总的来说,如果说Stable Diffusion是“优化噪声的艺术”,那么U-Net将是这个“艺术”的核心主导者。 【二】U-Net在AIGC时代中的核心结构与细节 Stable Diffusion中的U-Net,在Encoder-Decoder结构的基础上,增加了Time Embedding模块,Spatial Transformer(Cross Attention)模块和self-attention模块。
Stable Diffusion 里采用的 UNetModel 模型,采用 Encoder-Decoder 结构来预估噪声,网络结构如图 5: 图5 Unet网络结构示意图 模型输入包括 3 个部分,(1) 图像表示,用隐空间向量输入的维度为[B, Z, H/8, W/8];(2) timesteps 值,维度为[B, ];(3) 文本向量表示 context,维度为[B, K, E]。其中[B,...
Stable Diffusion 里采用的 UNetModel 模型,采用 Encoder-Decoder 结构来预估噪声,网络结构如图 5: 图5 Unet网络结构示意图 模型输入包括 3 个部分,(1) 图像表示,用隐空间向量输入的维度为[B, Z, H/8, W/8];(2) timesteps 值,维度为[B, ];(3) 文本向量表示 context,维度为[B, K, E]。其中[B,...
Stable Diffusion 里采用的 UNetModel 模型,采用 Encoder-Decoder 结构来预估噪声,网络结构如图 5: 图5 Unet网络结构示意图 模型输入包括 3 个部分,(1) 图像表示,用隐空间向量输入的维度为[B, Z, H/8, W/8];(2) timesteps 值,维度为[B, ];(3) 文本向量表示 context,维度为[B, K, E]。其中[B,...