ST-GCN 的人体时空图如下图所示。一帧图像中的人体骨架信息可以表示成 2D 或者 3D 的关节点坐标。研究人员在具有 个关节点,连续 帧图像的视频上构造了时空图 = ( , )。下面将从节点集和边集两方面介绍时空图的构…
ST-GCN 动作识别演示我们的基于骨架的动作识别演示展示了ST-GCN如何从人体骨架中提取局部模式和关联性。下图显示了我们ST-GCN最后一层中每个节点的神经响应幅度。 触摸头部 坐下 脱鞋 进食 投踢他人 掷锤 清洁与抓举 拉力器 太极拳 抛球 上一行结果来自NTU-RGB+D数据集,第二行来自Kinetics-skeleton数据集。‘ 前...
本论文正是针对这个任务提出了一种全新的深度学习模型,我们称之为「时空图卷积网络」(ST-GCN)。构建时空图 ST-GCN 的基础是时空图结构。从骨架关键点序列构建时空图 (spatial-temporal graph) 的想法来源于我们对现有的骨架动作识别方法以及图像识别方法的观察。我们发现,现有的基于骨架的动作识别方法中为了提高识...
这项工作的主要贡献在于三个方面:1)我们提出 ST-GCN,一个基于图的动态骨骼建模方法,这是首个用以完成本任务的基于图形的神经网络的应用。2)我们提出了在 ST-GCN 中设计卷积核的几个原则,旨在满足骨骼建模的具体要求。3)在基于骨骼动作识别的两个大规模数据集上,我们的模型与先前使用的手动分配部分或遍历规则的...
近日,香港中大-商汤科技联合实验室的最新 AAAI 会议论文「Spatial Temporal Graph Convolution Networks for Skeleton Based Action Recognition」提出了一种新的 ST-GCN,即时空图卷积网络模型,用于解决基于人体骨架关键点的人类动作识别问题。该方法除了思路新颖之外,在标准的动作识别数据集上也取得了较大的性能提升。本文...
导语:港中文 AAAI 会议论文提出了一种新的 ST-GCN,即时空图卷积网络模型,用于解决基于人体骨架关键点的人类动作识别问题。 雷锋网 AI 科技评论按:第 32 届 AAAI 大会(AAAI 2018)日前在美国新奥尔良进行,于当地时间 2 月 2 日至 7 日为人工智能研究者们带来一场精彩的学术盛宴。AAAI 2018 今年共收到论文投稿...
近日,港中大-商汤科技联合实验室的最新 AAAI 会议论文「Spatial Temporal Graph Convolutional Networks for Skeleton Based Action Recognition」提出了一种新的 ST-GCN,即时空图卷积网络模型,用于解决基于人体骨架关键点的人类动作识别问题。该方法除了思路新颖之外,在标准的动作识别数据集上也取得了较大的性能提升。本文...
提出通过将图神经网络扩展到时空图模型(称为时空图卷积网络(ST-GCN))来设计用于动作识别的骨架序列的通用表示。如图1所示,该模型建立在一系列骨架图之上,其中每个节点对应于人体的一个关节。有两种类型的边,即符合节点自然连通性的空间边(图1中淡蓝色线条)和跨越连续时间步长连接相同节点的时间边(淡绿色线条)。在此...