ST-GCN中的GCN属于图分类,且采用的是空间方法。2.4 ST-GCN ST-GCN:Spatial Temporal Graph Convolutional Networks时空图卷积网络,是在GCN的基础上提出的。核心观点是将TCN与GCN相结合,用来处理有时序关系的图结构数据。网络分为2个部分:GCN_Net与TCN_Net。GCN_Net对输入数据进行空间卷积,即不考虑时间的因素...
ST-GCN中的GCN属于图分类,且采用的是空间方法。 2.4 ST-GCN ST-GCN:Spatial Temporal Graph Convolutional Networks时空图卷积网络,是在GCN的基础上提出的。核心观点是将TCN与GCN相结合,用来处理有时序关系的图结构数据。网络分为2个部分:GCN_Net与TCN_Net。 GCN_Net对输入数据进行空间卷积,即不考虑时间的因素,卷...
ST-GCN:Spatial Temporal Graph Convolutional Networks时空图卷积网络,是在GCN的基础上提出的。核心观点是将TCN与GCN相结合,用来处理有时序关系的图结构数据。网络分为2个部分:GCN_Net与TCN_Net。 GCN_Net对输入数据进行空间卷积,即不考虑时间的因素,卷积作用于同一...
ST-GCN:Spatial Temporal Graph Convolutional Networks时空图卷积网络,是在GCN的基础上提出的。核心观点是将TCN与GCN相结合,用来处理有时序关系的图结构数据。网络分为2个部分:GCN_Net与TCN_Net。 GCN_Net对输入数据进行空间卷积,即不考虑时间的因素,卷积作用于同一时序的不同点的数据。TCN_Net对数据进行时序卷积,...
ST-GCN是TCN与GCN的结合。TCN,对时间维度的数据进行卷积操作;GCN,则对空间维度的数据进行卷积操作。GCN属于GNN,而GNN的基础是图论。神经网络处理的传统数据都是欧式距离结构的数据,比如二维的图像、一维的声音等等。而对于非欧式距离结构的数据,比如社交网络、交通运输网等等,传统的网络结构无法直接处理,而GNN就是用来...
ST-GCN是TCN与GCN的结合。TCN,对时间维度的数据进行卷积操作;GCN,则对空间维度的数据进行卷积操作。GCN属于GNN,而GNN的基础是图论。神经网络处理的传统数据都是欧式距离结构的数据,比如二维的图像、一维的声音等等。而对于非欧式距离结构的数据,比如社交网络、交通运输网等等,传统的网络结构无法直接处理,而GNN就是用来...
GCN 只是表征了单帧图像上的关键点之间的信息,简而言之就是空间信息,没有表征帧之间关键点的信息,因此引入TCN。TCN的思想很简单,就是对帧之间的相同序号的关键点特征向量做个卷积。 TCN 2.1 代码实现 self.tcn=nn.Sequential(nn.BatchNorm2D(out_channels),nn.ReLU(),nn.Conv2D(out_channels,out_channels,(ke...
ST-GCN这篇论文算是GCN在骨骼行为识别里面的开山之作了,虽然他只是2018年发表的。这篇论文还给了很详细的代码,2019年发表在CVPR上的AS-GCN和2s-AGCN都是在该代码的基础上改进的。 我第一次读ST-GCN时,才开始接触GCN,给我的感觉就是超难懂,本来遇到很少这方面的,论文里面的公式又很难懂。而且翻一翻别人的博客...
ST-GCN 使用的是 TCN,由于形状固定,我们可以使用传统的卷积层完成时间卷积操作。为了便于理解,可以类比...
1、ST-GCN 介绍 ST-GCN是香港中文大学提出一种时空图卷积网络,可以用它进行人类行为识别。这种算法基于人类关节位置的时间序列表示而对动态骨骼建模,并将图卷积扩展为时空图卷积网络而捕捉这种时空的变化关系。 1.1 模型通道 基于骨架的数据可以从动作捕捉设备中获得,也可以从视频中获得姿态估计算法。通常数据是一个坐...