$ git clone https://github.com/hnuzhy/SSDA-YOLO.git $ pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple # Codes are only evaluated on GTX3090+CUDA11.2+PyTorch1.10.0. You can follow the same config if needed # [method 1][directly install from the official ...
文献题目:SSDA-YOLO: Semi-supervised Domain Adaptive YOLO for Cross-Domain Object Detection 期刊:Computer Vision and Image Understanding, 2023 - Elsevier 项目地址:github.com/hnuzhy/SSDA- 论文地址:[2211.02213v2] SSDA-YOLO: Semi-supervised Domain Adaptive YOLO for Cross-Domain Object Detection (arxiv...
此外,为了验证其通用性,对从各个教室收集的哈欠检测数据集进行了实验。结果表明,论文的方法在这些DAOD任务中有了很大的改进,代码可在https://github.com/hnuzhy/SSDA-YOLO中获得! 领域背景与主要思路 基于卷积神经网络(CNN)的现代目标检测方法已经取得了许多显著的改进,然而,这些方法的高精度大多局限于训练集源域。
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment Metadata AssigneesNo one assigned LabelsNo labels ProjectsNo projects MilestoneNo milestone RelationshipsNone yet Development No branches or pull requests Participants Issue actionsFooter...