SSD是单阶段的目标检测算法,通过卷积神经网络进行特征提取,取不同的特征层进行检测输出,所以SSD是一种多尺度的检测方法。在需要检测的特征层,直接使用一个3 $\times$ 3卷积,进行通道的变换。SSD采用了anchor的策略,预设不同长宽比例的anchor,每一个输出特征层基于anchor预测多个检测框(4或者6)。采用了多尺度检测...
一是SSD提取了不同尺度的特征图来做检测,大尺度特征图(较靠前的特征图)可以用来检测小物体,而小尺度特征图(较靠后的特征图)用来检测大物体;二是SSD采用了不同尺度和长宽比的先验框(Prior boxes, Default boxes,在Faster R-CNN中叫做锚,Anchors)。
SSD提取了不同尺度的特征图来做检测,大尺度特征图可以用来检测小物体,而小特征图用来检测大物体; SSD采用了不同尺度和长宽比的先验框,在faster r-cnn和yoloV2,V3中称为Anchors。 1、 SSD网络结构 SSD是YOLO V1出来后,YOLO V2出来前的一款One-stage目标检测器。SSD用到了多尺度的特征图,在之后的YOLO V3的dar...
SSD,全称Single Shot MultiBox Detector,是Wei Liu在ECCV 2016上提出的一种目标检测算法,截至目前是主要的检测框架之一,相比Faster RCNN有明显的速度优势,相比YOLO又有明显的mAP优势(不过已经被CVPR 2017的YOLO9000超越)。 图1 速度对比 SSD具有如下主要特点: 从YOLO中继承了将detection转化为regression的思路,一次完成...
目标检测近年来已经取得了很重要的进展,主流的算法主要分为两个类型:(1)two-stage方法,如R-CNN系算法,其主要思路是先通过启发式方法(selective search)或者CNN网络(RPN)产生一系列稀疏的候选框,然后对这些候选框进行分类与回归,two-stage方法的优势是准确度高;(2)one-stage方法,如Yolo和SSD,其主要思路是均匀地在...
SSD,全称Single Shot MultiBox Detector,是Wei Liu在ECCV 2016上提出的一种目标检测算法,截至目前是主要的检测框架之一,相比Faster RCNN有明显的速度优势,相比YOLO又有明显的mAP优势(不过已经被CVPR 2017的YOLO9000超越)。 图1 速度对比 SSD具有如下主要特点: ...
目标检测近年来已经取得了很重要的进展,主流的算法主要分为两个类型(参考RefineDet):(1)two-stage方法,如R-CNN系算法,其主要思路是先通过启发式方法(selective search)或者CNN网络(RPN)产生一系列稀疏的候选框,然后对这些候选框进行分类与回归,two-stage方法的优势是准确度高;(2)one-stage方法,如Yolo和SSD,其主要...
SSD采用的主干网络是VGG网络,这里的VGG网络相比普通的VGG网络有一定的修改,主要修改的地方就是: 1、将VGG16的FC6和FC7层转化为卷积层。 2、去掉所有的Dropout层和FC8层; 3、新增了Conv6、Conv7、Conv8、Conv9。 上图是原论文中的SSD300与YOLO网络结构图。为什么要把SSD与YOLO对比呢?因为截止到目前目标检测分...
SSD是一种单阶段目标检测算法,通过卷积神经网络进行特征提取,并在不同的特征层进行检测输出,实现多尺度检测。它采用了anchor的策略,预设不同长宽比例的anchor,并在每个输出特征层上预测多个检测框。SSD框架包括了多尺度检测方法,浅层用于检测小目标,深层用于检测大目标。
一、目标检测之SSD SSD: Single Shot MultiBox Detector 论文链接:https://arxiv.org/abs/1512.02325 论文代码:https://github.com/balancap/SSD-Tensorflow 二、SSD算法 1、整体框架 图1: 图2: 算法步骤: 1、输入一幅图片(300x300),将其输入到预训练好的分类网络中来获得不同大小的特征映射,修改了传统的VGG...