ssa-lstm原理 SSA-LSTM 是将奇异谱分析(Singular Spectrum Analysis,SSA)与长短期记忆网络(Long Short-Term Memory,LSTM)相结合的一种模型,常用于时间序列预测等领域,下面为你分别介绍其组成部分及原理: 奇异谱分析(SSA)。 奇异谱分析是一种数据驱动的分析方法,主要用于时间序列的分解和特征提取,其核心步骤如下: ...
LSTM 是基于RNN 的一种改进,它保留了 RNN 自连接的隐藏层,而且隐藏层中的节点更为复杂,可以实现较长时间序列的信息保留 2 运行结果 部分代码: %% 获取优化参数 numHiddenUnits = round(x(1));%LSTM网路包含的隐藏单元数目 maxEpochs = round(x(2));%最大训练周期 InitialLearnRate = x(3);%初始学习率...
LSTM 包含遗忘门、输入门和输出门[24] ,通过控制三个门的状态来更新细胞状态里的数据信息。其计算过程如下: 2 运行结果 2.1 RF特征选择 2.2 LSTM预测 2.3 SSA-LSTM预测 2.4 MLP预测 2.5 几种算法比较 plt.rcParams['xtick.direction'] = 'in' plt.rcParams['ytick.direction'] = 'in' plt.figure(fig...
📚 本代码基于Matlab平台编译,将SSA(樽海鞘优化算法)与LSTM(长短期记忆神经网络)结合,进行多输入数据回归预测。🔍 输入训练的数据包含7个特征,1个响应值,即通过7个输入值预测1个输出值(多变量回归预测,个数可自行制定)。📈 归一化训练数据,提升网络泛化性。🔢 通过SSA算法优化LSTM网络的学习率、神经元个数...
(1)提出一种考虑刀具磨损的VMD-SSA-LSTM神经网络数控铣床切削过程功率预测方法,该方法包括数据采集、刀具磨损量提取和切削过程功率预测模型的建立这三个关键技术。 (2)提出一种基于人工智能机器视觉技术的刀具最大磨损量提取方法,该方法操作简...
时序预测 | MATLAB实现EEMD-SSA-LSTM、EEMD-LSTM、SSA-LSTM、LSTM时间序列预测对比 模型描述 麻雀搜索算法(Sparrow Search Algorithm, SSA)是于2020年提出的。SSA 主要是受麻雀的觅食行为和反捕食行为的启发而提出的。该算法比较新颖,具有寻优能力强,收敛速度快的优点。建立麻雀搜索算法的数学模型,主要规则如下所述: ...
lb=[1 1 1 0.001];%分别对两个lstm隐含层节点 训练次数与学习率寻优 ub=[100 100 50 0.01];%这个分别代表4个参数的上下界,比如第一个参数的范围就是1-100 %初始化种群 for i = 1 : pop for j=1:dim if j==1%除了学习率 其他的都是整数 ...
SSA-LSTM,即麻雀搜索算法SSA优化LSTM的程序,麻雀搜索算法是2021年提出来的,比较有创新性。 本程序优化隐含层神经元个数,最佳学习率,最佳迭代次数。 相较于不经过优化的LSTM,预测精度明显提高。 程序内注释详细,直接替换数据就可以用,可学习性强。 直接运行可以出拟合预测图,优化迭代图,多种评价指标,便于分析学习。
之前分享了预测的程序基于LSTM的负荷和可再生能源出力预测【核心部分复现】,该程序预测效果比较好,并且结构比较清晰,但是仍然有同学咨询混合算法的预测,本次分享基于VMD-SSA-LSTM的多维时序光伏功率预测,本程序参考文章《基于VMD-SSA-LSSVM的短期风电预测》和《基于改进鲸鱼优化算法的微网系统能量优化管理》,采用不同方法...
在本文提出的算法中,我们将SSA-VMD和LSTM相结合,实现光伏发电功率的精确预测。算法的流程如下: 收集光伏发电功率的历史数据,并进行预处理,包括数据清洗、归一化等。 使用SSA-VMD将原始数据分解为多个子信号。 将分解得到的子信号作为输入,训练LSTM模型。LSTM模型可以学习子信号的模式和趋势。