在光伏发电功率预测中,LSTM可以通过学习历史数据的模式和趋势,来预测未来的光伏发电功率。 在本文提出的算法中,我们将SSA-VMD和LSTM相结合,实现光伏发电功率的精确预测。算法的流程如下: 收集光伏发电功率的历史数据,并进行预处理,包括数据清洗、归一化等。 使用SSA-VMD将原始数据分解为多个子信号。 将分解得到的子信...
在光伏发电功率预测中,LSTM可以通过学习历史数据的模式和趋势,来预测未来的光伏发电功率。 在本文提出的算法中,我们将SSA-VMD和LSTM相结合,实现光伏发电功率的精确预测。算法的流程如下: 收集光伏发电功率的历史数据,并进行预处理,包括数据清洗、归一化等。 使用SSA-VMD将原始数据分解为多个子信号。 将分解得到的子信...
结合这三个技术,基于VMD-SSA-LSTM的回归预测模型的基本原理如下: 信号分解: 首先,使用VMD将原始时间序列数据分解为多个IMFs,每个IMF代表信号的一个特定频率成分。 成分分析: 然后,对每个IMF使用SSA进行进一步的分解和分析,以提取更详细的信号成分和特征。 特征提取: 从VMD和SSA处理后的信号成分中提取特征,这些特征能...
VMD、SSA和 LSTM相耦合成VMD-SSA-LSTM月径流预测模型,具体预测步骤如下。 步骤1选定前n个负荷信息作为模型输入。 步骤2利用VMD 方法对原始的负荷序列进行分解,得到k个分量。 步骤3首先设置麻雀种群规模N、最大迭代次数M、参数范围(隐含层神经元数H、训练次数E和学习率z)的搜索范围,然后选用均方误差(M Msz)作为...
通过以上流程,我们可以得到一种基于麻雀算法优化SSA-VMD-LSTM的光伏发电功率预测算法。该算法可以充分利用光伏发电数据的特征,提高预测的准确性和稳定性。在实际应用中,该算法可以为能源规划和电力调度提供重要参考,帮助实现可靠、高效的光伏发电系统。 总结起来,本文介绍了一种基于麻雀算法优化SSA-VMD-LSTM的光伏发电功率...
步骤2利用VMD 方法对原始的负荷序列进行分解,得到k个分量。 步骤3首先设置麻雀种群规模N、最大迭代次数M、参数范围(隐含层神经元数H、训练次数E和学习率z)的搜索范围,然后选用均方误差(M Msz)作为优化算法中的目标函数,最后建立起麻雀搜索算法与长短期神经网络相耦合模型(SSA-LSTM)。
1.GWO-VMD-SSA-LSTM灰狼优化变分模态分解联合麻雀优化长短期记忆网络多变量时间序列光伏功率预测。 2.优化参数为:学习率,隐含层单元数目,最大训练周期,运行环境为Matlab2023b及以上; 3.数据集为excel(光伏功率数据集,输入辐射度、气温、气压、湿度,输出光伏功率),输入多个特征,输出单个变量,考虑历史特征的影响,多变...
结合这三个技术,基于VMD-SSA-LSTM的回归预测模型的基本原理如下: 信号分解: 首先,使用VMD将原始时间序列数据分解为多个IMFs,每个IMF代表信号的一个特定频率成分。 成分分析: 然后,对每个IMF使用SSA进行进一步的分解和分析,以提取更详细的信号成分和特征。
The SSA-VMD-LSTM-NKDE combination model can not only effectively improve the accuracy of deterministic prediction, but also effectively quantify the uncertainty of wind power prediction results, which provides scientific decision-making basis for wind power prediction.高晓芝...
基于VMD-SSA-LSTM的多维时序风电功率预测软件平台是由国网江西省电力有限公司抚州供电分公司著作的软件著作,该软件著作登记号为:2024SR0286932,属于分类,想要查询更多关于基于VMD-SSA-LSTM的多维时序风电功率预测软件平台著作的著作权信息就到天眼查官网!