Squeeze-and-Excitation Networks(SENet)是由自动驾驶公司Momenta在2017年公布的一种全新的图像识别结构,它通过对特征通道间的相关性进行建模,把重要的特征进行强化来提升准确率。这个结构是2017 ILSVR竞赛的冠军,top5的错误率达到了2.251%,比2016年的第一名还要低25%,可谓提升巨大。 Squeeze-and-Excitation(SE) block...
第一步squeeze操作,将各通道的全局空间特征作为该通道的表示,形成一个通道描述符;第二步excitation操作,学习对各通道的依赖程度,并根据依赖程度的不同对特征图进行调整,调整后的特征图就是SE block的输出。 前面层中的SE block以类别无关(class agnostic)的方式增强可共享的低层表示的质量。越后面的层SE block越来...
Squeeze-and-Excitation Networks(SENet)是由自动驾驶公司Momenta在2017年公布的一种全新的图像识别结构,它通过对特征通道间的相关性进行建模,把重要的特征进行强化来提升准确率。这个结构是2017 ILSVR竞赛的冠军,top5的错误率达到了2.251%,比2016年的第一名还要低25%,可谓提升巨大。这么大的提升是怎么来的呢?今天就...
这篇文章“Squeeze-and-Excitation Networks”是CVPR2018的一篇论文,因为最近看的MnasNet的论文里面提到了SENet里面提出的一个很有用的block,所以又翻出来看了下这篇文章,原论文见 Squeeze-and-Excitation Networks。 下面是对论文的一个简单翻译: 摘要 卷积神经网络(CNN)的核心组成部分是卷积算子,它通过在...
Squeeze-and-Excitation Networks 修改于 2022-09-04 21:47:44 2.1K0 举报 文章被收录于专栏:计算机视觉理论及其实现 1、摘要 卷积神经网络(CNNs)的核心构件是卷积算子,它通过在每一层的局部接受域内融合空间和信道信息来构造信息特征。之前的大量研究已经研究了这种关系的空间成分,试图通过提高整个特征层次的空间...
Squeeze-and-Excitation Networks 摘要 卷积神经网络建立在卷积运算的基础上,通过融合局部感受野内的空间信息和通道信息来提取信息特征。为了提高网络的表示能力,许多现有的工作已经显示出增强空间编码的好处。在这项工作中,我们专注于通道,并提出了一种新颖的架构单元,我们称之为“Squeeze-and-Excitation”(SE)块,通过显...
Squeeze and excitation block SE为计算单元,可以由任意输入变换构建 为方便起见,本文将Ftr看作是卷积操作。 代表可学习的卷积核集合。其中,vc代表第c个卷积核的参数。Ftr的输出表示如下,*代表卷积, 其中, X = , 为一个2D核,表示vc的一个通道与对应的x的通道进行卷积。由于结果是所有通道相加和。vc中存在潜在...
Squeeze-and-Excitation Networks ie Hu[0000−0002−5150−1003] Li Shen[0000−0002−2283−4976] Samuel Albanie[0000−0001−9736−5134] Gang Sun[0000−00... 查看原文 OpenGL学习脚印: 投影矩阵和视口变换矩阵(math-projection and viewport matrix) ...
大量先前的研究已经调查了这种关系的空间组成部分,试图通过提高空间编码的质量来增强 cnn 的代表性。在这项工作中,我们将重点放在通道关系上,并提出了一种新的结构单元,我们称之为“挤压-激励”(se)块,它通过明确建模通道之间的相互依赖性,自适应地重新校准通道特征响应。