【解析】 解:$$ \sqrt { 2 } \times \sqrt { 3 } = \sqrt { 6 } $$;故答案为$$ \sqrt { 6 } $$. 点睛:此题考查了二次根式的乘法,掌握二次根式的运算法则:乘法法则$$ \sqrt { a } \cdot \sqrt { b } = \sqrt { a b } $$是本题的关键. ...
解析 x\geqslant \dfrac {3}{2} 解:∵2x-3\geqslant 0,∴x\geqslant \dfrac {3}{2},故答案为:x\geqslant \dfrac {3}{2}.根据二次根式有意义的条件即可求出答案.本题考查二次根式,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型....
我的新作《“√2+1第三恒等式”与“√2+1第四恒等式”》 是我的 “重要数学考试、数学竞赛试题与初等数学研究”系列文章的 第123篇。 欢迎批评指正, 欢迎转载刋发。 非常感谢! 吴康回忆录 《我的奥数情》 我的奥数情·92 我...
作业:求算式 sqrt(2*sqrt(3)-3) 的值. 题型:数学计算 解: sqrt(2*sqrt(3)-3) =sqrt(2*sqrt3-3) =sqrt0.464102 =0.68125 答案:sqrt(2*sqrt(3)-3)=0.68125 你的问题在这里没有得到解决?请到 热门难题 里面看看吧! 返回豫ICP备19044667号 ...
(\sigma+\frac{M_y}{L}) + E_y - B =-\frac{1}{2}[(\sigma+\frac{M_x}{L}) + E_x - B] ,化简可得: (L\sigma+M_y) + L(E_y - B)=-\frac{1}{2}[(L\sigma+M_x) + L(E_x - B)] ,化简可得: M_y+ LE_y=\frac{3}{2}L(B-\sigma)-\frac{1}{2}(M_x + LE...
百度试题 结果1 题目sqrt(3)等于几?相关知识点: 试题来源: 解析 展开全部 sqrt(3), 即,根号下(3),是无理数(无限不循环小数),约等于1.732 反馈 收藏
设\sqrt{2}=a,\sqrt{3}=b,则\sqrt{2}×\sqrt{0.03}可以表示为(\quad) A. A.\(\dfrac{ab}{100}\) B.
因此,定子电流空间矢量的系数为sqrt(3)/sqrt(I_a^2 + I_b^2 + I_c^2)。又因为I_a^2 + ...
求*方根在牛顿迭代公式中,f(x)=x^2-a,则f'(x)=2x。以上的牛顿迭代公式变为:x(n+1)=x(n)-(x(n)^2-a)/2x,即(x(n)+a/x(n))/2。我们随便猜一个数r,假设r是f(x)=0的根,经过几次牛顿迭代公式后(以上的公式)所得到的x值即是f(x)=0的根或者其非常精确的*似值。
sqrt2和sqrt3在二进制展开下的2的差是关于k的周期函数的话,