K均值聚类要求参与聚类的指标变量为连续型数据,用于对样本进行分类处理。聚类个数K值,我们可以根据行业知识、经验来自行给定,也可以遍历多个聚类方案进行优选探究,一般建议聚类个数2~6个,不宜过多。实践中,参与聚类的指标变量可能既有连续数据,也会包括分类数据。我们看到在SPSSAU的“聚类”功能下,允许同时存在连...
(1)聚类基本情况 (2)聚类类别命名 (3)聚类中心 (4)聚类效果可视化 五、总结 K均值聚类分析流程 一、案例背景 在某体育赛事中,意大利、韩国、罗马尼亚、法国、中国、美国、俄罗斯七个国家的裁判对300名运动员进行评分,现在想要通过评分上的差异将300名选手进行分类,计划将选手分为高水平、中水平、低水平三个类别。
1)聚类依据是至关重要的,多一个少一个都可能引起聚类结果的改变,本例将所有品质得分数据作为聚类依据。 2)聚几个类合适呢?可以采用遍历的方式反复多次聚类,并对结果进行比较总结经验,类可以不要太多,本例聚成3类。因此聚类数直接输入数字3。 K均值聚类要求用户在开始聚类前对聚类对象的分类有所认知,开始聚类时应...
SPSS聚类分析:K均值聚类分析 ⼀、概念:(-分类-K均值聚类)1、此过程使⽤可以处理⼤量个案的算法,根据选定的特征尝试对相对均⼀的个案组进⾏标识。不过,该算法要求您指定聚类的个数。如果知道,您可以指定初始聚类中⼼。您可以选择对个案分类的两种⽅法之⼀,要么迭代地更新聚类中⼼,要么只进...
1 选择需要分析的数据 2 选择菜单【分析】-【分类】-【K-均值】,在跳出的对话框中进行如下操作,将标准化后的5个变量选入变量框中,聚类数填写5,其它保持默认状态 3 分别点击【迭代】、【保存】和【选项】按钮,然后依据实际需要选中项目。下图是聚类分析最基本的几个结果选项。4 点击确定,输出结果初始聚类...
聚类分析是一种解释数据的方法,要得到一个客观且综合的聚类分析结果必须经过多次不同方法实验。 SPSS里提供了两种具体的聚类方法:K-中心聚类和系统聚类。 K-中心聚类:也叫K均值聚类,此过程根据MacQueen算法。K中心聚类适用于较大表,多达几十万行。首先K均值聚类将对聚类种子点进行一个非常完善的预测,然后开始迭代。
SPSS聚类分析:K均值聚类分析 一、概念:(分析-分类-K均值聚类) 1、此过程使用可以处理大量个案的算法,根据选定的特征尝试对相对均一的个案组进行标识。不过,该算法要求您指定聚类的个数。如果知道,您可以指定初始聚类中心。您可以选择对个案分类的两种方法之一,要么迭代地更新聚类中心,要么只进行分类。可以保存聚类成员...
根据居住地距离 ,我们使用kmean聚类将样本分成2个类别,并保存结果到小区变量中。 结果如图所示。 聚类中心结果如下 每个样本的聚类信息: 分析不同小区居民的平均出行距离、平均家庭收入、年龄分布、性别分布、家庭人口数和受教育程度有什么区别吗? 从均值比较的结果来来看,第1个类别的工作里小区工作距离较短,第三个...
1. 非层次聚类法:将案例快速分成K个类别,一般而言具体的类别个数需要在分析前就加以确定,整个分析过程使用迭代的方式进行。其中K—均值聚类法最为常用,也称为快速聚类法(不能自动标准化,需要人为手动处理)。 2. 层次聚类法:首先确定距离的基本定义,以及类间距离的计算方式,随后按照距离的远近通过把距离较近的数据...
SPSS聚类分析:K均值聚类分析 一、概念:(分析-分类-K均值聚类) 1、此过程使用可以处理大量个案的算法,根据选定的特征尝试对相对均一的个案组进行标识。不过,该算法要求您指定聚类的个数。如果知道,您可以指定初始聚类中心。您可以选择对个案分类的两种方法之一,要么迭代地更新聚类中心,要么只进行分类。可以保存聚类成员...