1)聚类依据是至关重要的,多一个少一个都可能引起聚类结果的改变,本例将所有品质得分数据作为聚类依据。 2)聚几个类合适呢?可以采用遍历的方式反复多次聚类,并对结果进行比较总结经验,类可以不要太多,本例聚成3类。因此聚类数直接输入数字3。 K均值聚类要求用户在开始聚类前对聚类对象的分类有所认知,开始聚类时应...
一、k-均值聚类 K-Means是聚类算法中的最常用的一种,算法最大的特点是简单,好理解,运算速度快,可人为指定初始位置,适用于大样本聚类分析 缺点:只对样本聚类,不能对变量聚类 ;参数(聚类个数)需要提前指定,变量之间相关性都不高,只能应用于连续型的数据 K-means算法的过程。为了尽量不用数学符号,所以描述的不是...
根据居住地距离 ,我们使用kmean聚类将样本分成2个类别,并保存结果到小区变量中。 结果如图所示。 聚类中心结果如下 每个样本的聚类信息: 分析不同小区居民的平均出行距离、平均家庭收入、年龄分布、性别分布、家庭人口数和受教育程度有什么区别吗? 从均值比较的结果来来看,第1个类别的工作里小区工作距离较短,第三个...
五、选项:(分析-分类-K均值聚类-选项) 统计量。您可以选择以下统计量:初始聚类中心、ANOVA表以及每个个案的聚类信息。◎初始聚类中心.每个聚类的变量均值的第一个估计值。默认情况下,从数据中选择与聚类数相等的分布良好的多个个案。初始聚类中心用于第一轮分类,然后再更新。◎ANOVA表.显示方差分析表,该表包含每个聚...
1. 非层次聚类法:将案例快速分成K个类别,一般而言具体的类别个数需要在分析前就加以确定,整个分析过程使用迭代的方式进行。其中K—均值聚类法最为常用,也称为快速聚类法(不能自动标准化,需要人为手动处理)。 2. 层次聚类法:首先确定距离的基本定义,以及类间距离的计算方式,随后按照距离的远近通过把距离较近的数据...
K-均值聚类法相对于层次聚类法来说运算速度快很多,所以又称为快速聚类法。工具/原料 spss 方法/步骤 1 选择需要分析的数据 2 选择菜单【分析】-【分类】-【K-均值】,在跳出的对话框中进行如下操作,将标准化后的5个变量选入变量框中,聚类数填写5,其它保持默认状态 3 分别点击【迭代】、【保存】和【选项...
SPSS聚类分析:K均值聚类分析 SPSS聚类分析:K均值聚类分析 ⼀、概念:(-分类-K均值聚类)1、此过程使⽤可以处理⼤量个案的算法,根据选定的特征尝试对相对均⼀的个案组进⾏标识。不过,该算法要求您指定聚类的个数。如果知道,您可以指定初始聚类中⼼。您可以选择对个案分类的两种⽅法之⼀,要么迭代...
本文旨在应用SPSS Modeler,帮助客户采用K-means(K-均值)聚类、CHAID、CART决策树等方法,对31个省市的土地利用情况数据进行分析和建模,以期提供科学有效的土地利用规划和管理策略。 31省市土地利用情况数据 数据流 本文使用的数据来自于国家统计局发布的31省市土地利用情况数据,选取31个省市作为研究对象,并选取了包括草地...
本文旨在应用SPSS Modeler,帮助客户采用K-means(K-均值)聚类、CHAID、CART决策树等方法,对31个省市的土地利用情况数据进行分析和建模,以期提供科学有效的土地利用规划和管理策略。 31省市土地利用情况数据 数据流 本文使用的数据来自于国家统计局发布的31省市土地利用情况数据,选取31个省市作为研究对象,并选取了包括草地...
1. 打开数据,依次选择 分析-> 分类 -> K-均值聚类… 2. 将分类的关键变量选入,这里以PM2.5和O3的监测数据为例。 3. 单击 迭代…,将 最大迭代次数设置成一个将大的数值,单机 继续 4. 单击 保存…,勾选 聚类成员和与聚类中心的距离,单击 继续 ...