SPP-Net算法基于一个空间金字塔池化层(SPP layer),无论输入的子图像大小如何,都会将子图像采样成固定大小的图像。 在使用SPP-Net进行检测的过程中,对原始图像只需要进行一次卷积网络计算,在得到整幅图像的特征图之后,通过空间金字塔池化层将每个候选框区域(ROI)都分别采样成相同尺寸的子图像,将相同尺寸的各个子图像送...
基于这些优点,SPP-net一般应改进所有基于CNN的图像分类方法。在ImageNet 2012数据集中,尽管它们的设计不同,我们证明了SPP-net提高了各种CNN架构的准确性。在Pascal VOC 2007和Caltech101数据集上,SPP-net使用单一的全图像表示,无需微调,就可以实现最先进的分类结果。 The power of SPP-net is also significant in...
简介: DL之SPP-Net:SPP-Net算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略 SPP-Net算法的设计思路 SPP-Net关键步骤 1、ROI池化层 2、卷积特征实际上和原始图像在位置上是有一定对应关系文章标签: 算法 关键词: 架构算法 架构应用 算法应用 .NET架构 .NET集合 ...
基于这些优点,SPP-net一般应改进所有基于CNN的图像分类方法。在ImageNet 2012数据集中,尽管它们的设计不同,我们证明了SPP-net提高了各种CNN架构的准确性。在Pascal VOC 2007和Caltech101数据集上,SPP-net使用单一的全图像表示,无需微调,就可以实现最先进的分类结果。 The power of SPP-net is also significant in...
在目标检测中,SPP-net的能力也很重要。利用SPP-net算法,只对整个图像进行一次特征映射计算,然后将特征集合到任意区域(子图像),生成固定长度的表示形式,用于训练检测器。该方法避免了卷积特征的重复计算。在处理测试图像时,我们的方法比R-CNN方法快24-102倍,而在Pascal VOC 2007上达到了更好或相近的精度。