实际测试约为1s。成为GUI设计的极大瓶颈。由于TFT驱动是自己FPGA设计的,资源尚有余量,决定把SPI控制器(主)及写图像部分逻辑放入FPGA中用硬件完成。 首先接触到的是SPI的SCK时钟频率问题。FPGA的频率是48M,未使用PLL。能否以此频率作为SCK频率呢?要知道所有的MCU提供的SPI频率最大为主频的1/2!为什么呢?查过一些资料...
对于320*240*16的图像读取时间为333ms,而且还忽略了等待SPI传输完成、写显存、地址坐标设定等时间。实际测试约为1s。成为GUI设计的极大瓶颈。由于TFT驱动是自己FPGA设计的,资源尚有余量,决定把SPI控制器(主)及写图像部分逻辑放入FPGA中用硬件完成。 首先接触到的是SPI的SCK时钟频率问题。FPGA的频率是48M,未使用PLL。
目前的项目中使用了SPI总线接口的FLASH存储器存储图像数据。FLASH的SPI总线频率高达66M,但MCU的频率较低,晶振频率7.3728M,SPI最大频率为主频1/2。对于320*240*16的图像读取时间为333ms,而且还忽略了等待SPI传输完成、写显存、地址坐标设定等时间。实际测试约为1s。成为G
通常是1s。人们普遍认为在高速系统设计中需要考虑的关键问题是频率,其实这是误解,上升时间才是最关键的因素。频率:频率是指电流周期的波形在某个单位时间内重复的次数(通常是1s),单位通常为赫兹(Hz)。如我国的市电一般为50Hz,即电流在1秒钟重复了50次,如在板级比较常用的SPI协议,50MHz的话则...
命令窗口打印内容如下(单位:ps):约5us处开始进行扇区擦除操作,1s后扇区擦除操作完成。与预期结果一致。 2.3.4、上板验证 首先使用扇区擦除模块24‘b0000_0000_0000_0000_0000_1000,实际上就是擦除扇区0,和后面的页地址和字节地址没有关系。在2.2节做页写操作的验证时,我们给地址扇区0的页0的地址0x00~0x0a...
对于320*240*16的图像读取时间为333ms,而且还忽略了等待SPI传输完成、写显存、地址坐标设定等时间。实际测试约为1s。成为GUI设计的极大瓶颈。由于TFT驱动是自己FPGA设计的,资源尚有余量,决定把SPI控制器(主)及写图像部分逻辑放入FPGA中用硬件完成。 首先接触到的是SPI的SCK时钟频率问题。FPGA的频率是48M,未使用PLL...
实际测试约为 1s。成为 GUI 设计的极大瓶颈。由于 TFT 驱动是自己 FPGA 设计的,资源尚有余量,决定把 SPI 控制器(主)及写图 30、像部分逻辑放入 FPGA 中用硬件完成。首先接触到的是 SPI 的 SCK 时钟频率问题。 FPGA 的频率是 48M,未使用 PLL。能否以此频率作为 SCK 频率呢?要知道所有的 MCU 提供的 SPI ...
测试工程代码:实现了STM32每隔200ms发送流水灯数据给FPGA,使FPGA系统板上的4个LED灯实现流水操作;同时,FPGA每隔1s发送计数数据给STM32,并在STM32系统板上的LCD屏出来,即:显示0-9循环计数。 但下面的代码只是SPI作为从机的驱动部分,包括SPI发送数据与接收数据。
测试工程代码:实现了STM32每隔200ms发送流水灯数据给FPGA,使FPGA系统板上的4个LED灯实现流水操作;同时,FPGA每隔1s发送计数数据给STM32,并在STM32系统板上的LCD屏出来,即:显示0-9循环计数。 但下面的代码只是SPI作为从机的驱动部分,包括SPI发送数据与接收数据。
测试工程代码:实现了STM32每隔200ms发送流水灯数据给FPGA,使FPGA系统板上的4个LED灯实现流水操作;同时,FPGA每隔1s发送计数数据给STM32,并在STM32系统板上的LCD屏出来,即:显示0-9循环计数。 但下面的代码只是SPI作为从机的驱动部分,包括SPI发送数据与接收数据。