上图是SPD-Conv论文中的一个图表,展示了如何在YOLOv5的结构中实施SPD-Conv(在YOLOv8中同样适用)。图中标红的部分代表了SPD-Conv替换传统卷积操作的地方。YOLOv5的架构被分为三个主要部分: 1. 主干网络(Backbone):这是特征提取的核心部分,每个SPD和Conv层的组合都替换了原始YOLOv5中的步长卷积层。2. 颈部(Neck)...
这种结合使用SPD层和非步长卷积层的方法,使得CNN能够更好地处理小物体和低分辨率图像中的挑战,提高了模型在这些复杂场景下的性能和鲁棒性。 SPD-Conv 当尺度为2时的SPD-Conv图: (a)显示了标准的特征图 (b)展示了空间到深度操作,其中空间信息被重新排列到深度通道 (c)显示了结果特征图的深度增加 (d)表示在SPD...
SPD-Conv由一个空间到深度(SPD)层和一个非步长卷积(Conv)层组成,并且可以应用于大多数(如果不是全部的话)CNN架构中。我们在两个最具代表性的计算机视觉任务下解释这一新设计:目标检测和图像分类。然后,我们通过将SPD-Conv应用于YOLOv5和ResNet来创建新的CNN架构,并通过实验证明我们的方法特别是在图像分辨率低和小...
上图是SPD-Conv论文中的一个图表,展示了如何在YOLOv5的结构中实施SPD-Conv(在YOLOv8中同样适用)。图中标红的部分代表了SPD-Conv替换传统卷积操作的地方。YOLOv5的架构被分为三个主要部分: 1. 主干网络(Backbone):这是特征提取的核心部分,每个SPD和Conv层的组合都替换了原始YOLOv5中的步长卷积层。 2. 颈部(Neck...