在这项工作中,我们解决了这些挑战,最终实现了条件计算的承诺,模型容量提高了 1000 倍以上,而现代 GPU 集群的计算效率仅略有损失。我们引入了稀疏门控专家混合层Sparsely-Gated Mixture-of-Experts layer(MoE),由多达数千个前馈子网络组成。可训练的门控网络确定用于每个示例的这些专家的稀疏组合。我们将 MoE 应用于...
· 《熬夜整理》保姆级系列教程-玩转Wireshark抓包神器教程(8)-Wireshark的TCP包详 · 一个有趣的插件,让写代码变成打怪升级的游戏 · 任务系统之任务流程可视化 Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer 笔记 2024-10-14 14:0228004970:59 ~ 1:39 MENU 博客...
主要提出了a Sparsely-Gated Mixture-of-Experts layer (MoE), 设计,提高模型容量,同时降低计算量,且获得了更好的效果(91年前就有MoE的研究了,不要误以为只有大模型后才有MoE,这对理解设计动机比较重要)。初学者,例如我,可能有几个误区: 1) 以为MoE是独立的网络结构,本文是设计在LSTM单元结合,它不用于改变时...
论文出自:Shazeer N, Mirhoseini A, Maziarz K, et al. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer[J]. arXiv preprint arXiv:1701.06538, 2017. 摘要 神经网络的吸收信息的容量(capacity)受限于参数数目。 条件计算(conditional computation)针对于每个样本,激活网络的部分子...
1.2 Our Approach: The Sparsely-Gated Mixture-of-Experts Layer Our approach to conditional computation is to introduce a new type of general purpose neural network component: a Sparsely-Gated Mixture-of-Experts Layer (MoE). The MoE consists of a number of experts, each a simple feed-forward ne...
In this work, we address these challenges and finally realize the promise of conditional computation, achieving greater than 1000x improvements in model capacity with only minor losses in computational efficiency on modern GPU clusters. We introduce a Sparsely-Gated Mixture-of-Experts layer (MoE), ...
@misc{shazeer2017outrageously,title={Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer},author={Noam Shazeer and Azalia Mirhoseini and Krzysztof Maziarz and Andy Davis and Quoc Le and Geoffrey Hinton and Jeff Dean},year={2017},eprint={1701.06538},archivePrefix={arXiv...
In thiswork, we address these challenges and f inally realize the promise of conditionalcomputation, achieving greater than 1000x improvements in model capacity withonly minor losses in computational eff iciency on modern GPU clusters. We in-troduce a Sparsely-Gated Mixture-of-Experts layer (MoE)...
In this work, we address these challenges and finally realize the promise of conditional computation, achieving greater than 1000x improvements in model capacity with only minor losses in computational efficiency on modern GPU clusters. We introduce a Sparsely-Gated Mixture-of-Experts layer (MoE), ...
首先需要明确的是 MoE 肯定不是非常新的架构,因为早在 2017 年,谷歌就已经引入了 MoE,当时是稀疏门控专家混合层,全称为 Sparsely-Gated Mixture-of-Experts Layer,这直接带来了比之前最先进 LSTM 模型少 10 倍计算量的优化。2021 年,谷歌的 Switch Transformers 将 MoE 结构融入 Transformer,与密集的 T5-Base ...