TensorFlow中,categorical_crossentropy和sparse_categorical_crossentropy都是交叉熵损失函数,它们的数学意义相同,区别仅在于适用于不同的类别标签编码格式。 当输入数据的类别标签采用独热编码(OneHot Encoding)格式时,模型应采用 categorical_crossentropy 损失函数;当输入数据的类别标签采用序号编码(Label Encoding)格式时,...
对于二分类问题,损失函数用binary_crossentropy 对于多分类问题 如果label是one-hot编码,用categorical_crossentropy 如果label是整数编码,用sparse_categorical_crossentropy 备注: one-hot编码就是在标签向量化的时候,每个标签都是一个N维的向量(N由自己确定),其中这个向量只有一个值为1,其余的都为0 整数编码就是对所...
为True,表示接收到了原始的logits,为False表示输出层经过了概率处理(softmax) label_smoothing:[0,1]之间浮点值,加入噪声,减少了真实样本标签的类别在计算损失函数时的权重,最终起到抑制过拟合的效果。 SparseCategoricalCrossentropy:多分类,经常搭配Softmax使用,和CategoricalCrossentropy不同之处在于,CategoricalCross...
对于二分类问题,损失函数用binary_crossentropy 对于多分类问题 如果label是one-hot编码,用categorical_crossentropy 如果label是整数编码,用sparse_categorical_crossentropy 备注: one-hot编码就是在标签向量化的时候,每个标签都是一个N维的向量(N由自己确定),其中这个向量只有一个值为1,其余的都为0 整数编码就是对所...
TensorFlow中,categorical_crossentropy和sparse_categorical_crossentropy都是交叉熵损失函数,它们的数学意义相同,区别仅在于适用于不同的类别标签编码格式。 当输入数据的类别标签采用独热编码(OneHot Encoding)格式时,模型应采用 categorical_crossentropy 损失函数;当输入数据的类别标签采用序号编码(Label Encoding)格式时,...