Query 特征更新:基于Query 特征,采用一个MLP Decoder 获得其对应的3D 空间参考点坐标,将这个点通过相机内外参投影到图像平面上,并采样多尺度特征,最后融合这些采样特征来更新Query 特征; 预测与loss:基于多轮更新后的Query 特征,预测每个Query 对应的bounding box,并通过Bipartite 匹配的方式与真值进行匹配并计算损失函...
对于第二点,我们在实验过程中,发现两个异常现象: 1.相比dense-based算法,query-based算法的mATE(mean Average-Translation Error)指标普遍较差,即使是confidence高的预测结果也会存在较大的距离误差,如下图(a); 2. Sparse4D在行人上的Precision-Recall曲线前半段会迅速降低,如下图(b); (a)confidence-translation ...
1)相比dense-based算法,query-based算法的mATE(mean Average-Translation Error)指标普遍较差,即使是confidence高的预测结果也会存在较大的距离误差,如下图(a); 2)Sparse4D在行人上的Precision-Recall曲线前半段会迅速降低,如下图(b); 上述现象说明,Sparse4D输出的分类置信度并不适合用来判断框的准确程度,这主要是...
然而,在Sparse R-CNN中,Proposal Features和Proposal Boxes(对应的RoI Features)一对一进行交互(而非DETR中让Object Query和全局特征图的每个位置进行交互),并且Proposal Boxes本身已包含了在全局特征图中的位置信息,Proposal Features则作为Proposal Boxes对应(位置)的物体的丰富特征,因而在不需要空间位置编码的同时也能够...
当然,它的得意之处在于摒弃了DETR中让object query和全局特征图(密集)交互(即每个object query都和特征图的每个位置交互计算,这本质上属于dense)的Transformer attention机制,而是提出了一种稀疏(sparse)的交互形式。 基于上述,Sparse R-CNN之所以自称'sparse'在于...
(2)Sparse-based方法不需要Dense的特征转换,直接采样Sparse的特征做3D anchor的refine,能够避免以上问题。比如相关工作DETR,Deformable DETR,Sparse R-CNN,MoNoDETR,DETR3D,Sparse R-CNN3D,SimMOD,SRCN3D,PETR,Graph-DETR3D。最有代表性的Sparse 3D检测方法是DETR3D,但该方法对每个anchor query的单个3D reference poi...
然后是计算query和doc的分数,model.compute_lexical_matching_score(交集的权重相乘,然后累加),注意下面的代码是query和每个doc都计算了,计算量会比较大,在工程实践中需要用类似向量索引的方案(当前qdrant、milvus等都提供sparse检索支持) Copy # 检索topkrecall_results = []importnumpyasnpforiintqdm(range(len(test...
在Sparse4Dv2的框架中,时序建模采用了递归形式,将前一帧的实例投影到当前帧上作为输入。时序实例类似于基于query的跟踪器中的track query,不同之处在于track query受到更高阈值的约束,表示高度自信的检测结果。相比之下,v3的时序实例很多,其中大多数可能无法准确地表示先前帧中检测到的目标。
Specifically, we develop a learnable top-k selection operator to adaptively retain the most crucial attention scores from the keys for each query for better feature aggregation. Simultaneously, as the naive feed-forward network in Transformers does not model the multi-scale information that is ...
在Sparse4Dv2的框架中,时序建模采用了递归形式,将前一帧的实例投影到当前帧上作为输入。时序实例类似于基于query的跟踪器中的track query,不同之处在于track query受到更高阈值的约束,表示高度自信的检测结果。相比之下,v3的时序实例很多,其中大多数可能无法准确地表示先前帧中检测到的目标。