sparse matrices/ sparse matrix multiplication algorithmsimple algorithmscalar processorsvector processorsphysics computingSummary: A simple algorithm for multiplication of sparse matrices is proposed. This algorithm can be easily incorporated into existing matrix multiplication routines. Behavior of the given ...
Sparse-matrix-multiplication晴初**nt 在2024-02-15 15:27:48 访问982.1 KB 稀疏矩阵乘法是一种优化算法,用于处理具有大量零元素的稀疏矩阵。传统的矩阵乘法算法在处理稀疏矩阵时效率较低,因为它需要进行大量的乘法和加法运算。 改进的稀疏矩阵乘法算法采用了压缩存储的方式,将稀疏矩阵转化为三元组表示。对于每个非...
classSolution {public: vector<vector<int>> multiply(vector<vector<int>>& A, vector<vector<int>>&B) { vector<vector<int>>ret;intha =A.size();if(!ha)returnret;intwa = A[0].size();if(!wa)returnret;inthb =wa;intwb = B[0].size();if(!wb)returnret;//Preprocessingunordered_map<...
网络稀疏矩阵乘法 网络释义 1. 稀疏矩阵乘法 加速如物理解答器(physics solvers)、光线追踪及稀疏矩阵乘法(sparse matrix multiplication)等演算法,其数据位址无法事先 … auction1.paipai.com|基于15个网页 例句
We present a sparse matrix multiplication library which takes these two points into account and aims to provide good performance for these types of matrices. In particular, we aim for an algorithm that becomes equal to the known optimal algorithms for the dense matrix multiplication in the case ...
For m≤ n 1.68, the new algorithm is also faster than the best known matrix multiplication algorithm for dense matrices which uses O(n 2.38) algebraic operations. The new algorithm is obtained using a surprisingly straightforward combination of a simple combinatorial idea and existing fast ...
因为给定的matrix是稀疏矩阵,所以我们要做一些对于0的预处理。 由于C[i][k] = A[i][x] * B[x][k], 0 <= x <= n 我们可以用一个HashMap,将B中每行不为0的元素保存下来。 然后遍历A,将每个不为0的元素累加到C中去。 classSolution{publicint[][]multiply(int[][]A,int[][]B){if(A==nul...
A sparse matrix in COOrdinate format class scipy.sparse.coo_matrix(arg1, shape=None, dtype=None, copy=False) Also known as the ‘ijv’ or ‘triplet’ format. Advantages of the COO format •facilitates fast conversion among sparse formats ...
This means that the current upperbounds by Yuster cannot be improved without improving the sparse matrix multiplication algorithm by Yuster and Zwick~(ACM TALG'05) and vice versa. 展开 关键词: Computer Science - Data Structures and Algorithms ...
F. Smith, Using symmetries and antisymmetries to analyze a parallel multigrid algorithm: the elliptic boundary value case SIAM J. Numer. Anal., 26 (1989), pp. 1439–1461. [4] I. Duff, M. Marrone, and G. Radicati, A proposal for user level sparse BLAS, in preparation. [5] S. C....