拓扑sparse coding: 拓扑sparse coding主要是模仿人体大脑皮层中相邻的神经元对能提取出某一相近的特征,因此在deep learning中我们希望学习到的特征也具有这样“拓扑秩序”的性质。如果我们随意的将特征排列成一个矩阵,则我们希望矩阵中相邻的特征是相似的。也就是把原先那些特征系数的稀疏性惩罚项L1范数更改为不同小组L1范数惩罚之
本节将简单介绍下sparse coding(稀疏编码),因为sparse coding也是deep learning中一个重要的分支,同样能够提取出数据集很好的特征。本文的内容是参考斯坦福deep learning教程:Sparse Coding,Sparse Coding: Autoencoder Interpretation,对应的中文教程见稀疏编码,稀疏编码自编码表达。 在次之前,我们需要对凸优化有些了解,百度...
此时的求导涉及到了矩阵范数的求导,一般有2种方法,第一种是将求导问题转换到矩阵的迹的求导,可以参考前面博文Deep learning:二十七(Sparse coding中关于矩阵的范数求导)。第二种就是利用BP的思想来求,可以参考:Deep learning:二十八(使用BP算法思想求解Sparse coding中矩阵范数导数)一文。 代价函数关于权值矩阵A的导数...
3. 计算网络中l层的网络参数的偏导(如果是第0层网络,则表示是求代价函数对输入数据作为参数的偏导): 比如在上篇博文中Deep learning:二十七(Sparse coding中关于矩阵的范数求导),就使用过将矩阵范数转换成矩阵的迹形式,然后利用迹的求导公式得出结果,那时候是求sparse coding中非拓扑网络代价函数对权值矩阵A的偏导数...
Here based on convolutional neural network (CNN) and sparse coding process, we present a new deep transfer learning architecture for false positive reduction in lymph node detection task. We first convert the linear combination of the deep transferred features to the pre-trained filter banks. Next...
Deeplearning:⼆⼗七(Sparsecoding中关于矩阵的范数求导) 前⾔: 由于在sparse coding模型中求系统代价函数偏导数时需要⽤到矩阵的范数求导,这在其它模型中应该也很常见,⽐如说对⼀个矩阵内的元素值进⾏惩罚,使其值不能过⼤,则可以使⽤F范数(下⾯将介绍)约束,查阅了下矩阵范数求导...
Deep learning algorithms for human activity recognition using mobile and wearable sensor networks: State of the art and research challenges 4.1.3 Sparse coding methods Sparse coding proposed in Olshausen and Field (1997) provides a means to reduce sensor data dimension and represent them as an effic...
A lightweight Fast Sparse Coding Network (FSCN) is proposed to tackle anomaly detection based on STFF, which can be implemented on mainstream deep learning platforms. Compared with traditional sparse coding based methods, FSCN achieves higher accuracy at maximum 10000× lower latency. ...
典型的sparse coding的过程分为训练和测试。 Training:给定一些训练样本(training samples)[ x1, x2, …, xm(in Rd)],学习一本字典的基(bases)[Φ1,Φ2……(also in Rd)]。可是用k-means等无监督的方法,也可以用优化的方法(这时training完了同时也得到了这些training samples的codes,这是一个LASSO和...
Fast Convolutional Sparse Coding in the Dual Domain Convolutional sparse coding (CSC) is an important building block of many computer vision applications ranging from image and video compression to deep learning. We present two contributions to the state of the art in CSC. First, we significantly ...