TLDR:稀疏自动编码器(sparse autoencoder)只是一种常规的自动编码器(regular autoencoder),它使用 L1 惩罚( L1 penalty )或 KL 散度损失(KL divergence loss)来鼓励稀疏性,而不是使用低维瓶颈( low-dimensional bottleneck.)。 如果您理解了上述所有单词,您可能会对 OpenAl 论文感兴趣,该论文使用稀疏自动编码器(sp...
无监督学习-稀疏自动编码(Sparse Autoencoder) 在之前的博文中,我总结了神经网络的大致结构,以及算法的求解过程,其中我们提高神经网络主要分为监督型和非监督型,在这篇博文我总结下一种比较实用的非监督神经网络——稀疏自编码(Sparse Autoencoder)。 1.简介 上图是稀疏自编码的一般结构,最大的特点是输入层结点数(...
GitHub - tim-lawson/mlsae: Multi-Layer Sparse Autoencoders Embarrassingly simple,直接拿一个SAE在所有layer训一遍就完事了,其实residual stream本身写来写去cosine similarity就很高,所以好像直接训也能识别的不错:有一个点要注意就是loss设计,不同layer的magnitude不一样,所以要额外处理一下: ...
DL二(稀疏自编码器 Sparse Autoencoder) 稀疏自编码器 Sparse Autoencoder 一神经网络(Neural Networks) 1.1基本术语 神经网络(neural networks) 激活函数(activation function) 偏置项(bias units) 激活值(activation) 前向传播(forward propagation) 前馈神经网络(feedforward neural network) 1.2神经元(neuron)模型 这...
现在来进入sparse autoencoder的一个实例练习,参考Ng的网页教程:Exercise:Sparse Autoencoder。这个例子所要实现的内容大概如下:从给定的很多张自然图片中截取出大小为8*8的小patches图片共10000张,现在需要用sparse autoencoder的方法训练出一个隐含层网络所学习到的特征。该网络共有3层,输入层是64个节点,隐含层是25...
【摘要】 在深度学习领域,自编码器(Autoencoders)是一种常用的无监督学习算法,用于学习数据的低维表示。而稀疏自编码器(Sparse Autoencoders)作为自编码器的一种变种,在一定程度上能够更好地学习到数据的稀疏特征表示。本文将介绍稀疏自编码器的基本原理、训练方法以及应用领域。1. 稀疏自编码器的基本原理稀疏自编码...
稀疏自编码器 Sparse Autoencoder 降噪自编码器 Denoising Autoencoder 堆叠自编码器 Stacked Autoencoder 稀疏自编码器可以看做是自编码器的一个变种,它的作用是给隐藏神经元加入稀疏性限制,那么自编码神经网络即使在隐藏神经元数量较多的情况下任然可以返现输入数据中一些有趣的结构。 稀疏性可以被简单地解释为:如果当...
10:59 [动手写神经网络] pytorch 高维张量 Tensor 维度操作与处理,einops 23:03 [动手写 Transformer] 手动实现 Transformer Decoder(交叉注意力,encoder-decoder cross attentio) 14:43 [动手写神经网络] kSparse AutoEncoder 稀疏性激活的显示实现(SAE on LLM) 16:22 [...
Sparse autoencoders This repository hosts: sparse autoencoders trained on the GPT2-small model's activations. a visualizer for the autoencoders' features Install pip install git+https://github.com/openai/sparse_autoencoder.git Code structure See sae-viewer to see the visualizer code, hosted pub...
sparseautoencoder是一种自动编码器(autoencoder),在训练过程中,输入数据通过编码器映射到一个较低维度的潜空间(latent space),随后,编码器将潜空间中的数据解码回原始维度,目的是最小化原始输入和重构输出之间的差异。sparsecoding则是数据表示的稀疏形式,它要求一个较大的表示矩阵与输入数据相乘,...