spark.createDataFrame() # 实现从pd.DataFrame -> spark.DataFrame df.toPandas() # 实现从spark.DataFrame -> pd.DataFrame df.createOrReplaceTempView() # 实现从spark.DataFrame注册为一个临时SQL表 spark.sql() # 实现从注册临时表查询得到spark
通过query接口实现,提起query,首先可能想到的便是SQL中Q,实际上pandas中的query实现的正是对标SQL中的where语法,在实现链式筛选查询中非常好用,具体可参考Pandas用了一年,这3个函数是我的最爱…… where语句,Pandas以API丰富而著称,所以自然是不会放过where关键字的,不过遗憾的是Pandas中的where和Numpy中的where一样...
2.对上述结果执行行转列,实现数据透视表。这里,SQL中实现行转列一般要配合case when,简单的也可以直接使用if else实现。由于这里要转的列字段只有0和1两种取值,所以直接使用if函数即可: 上述SQL语句中,仅对sex字段进行groupby操作,而后在执行count(name)聚合统计时,由直接count聚合调整为两个count条件聚合,即: 如果...
这里,SQL中实现行转列一般要配合case when,简单的也可以直接使用if else实现。由于这里要转的列字段只有0和1两种取值,所以直接使用if函数即可: 上述SQL语句中,仅对sex字段进行groupby操作,而后在执行count(name)聚合统计时,由直接count聚合调整为两个count条件聚合,即: 如果survived字段=0,则对name计数,否则不计数(...
join on在SQL多表查询中是很重要的一类操作,常用的连接方式有inner join、left join、right join、outer join以及cross join五种,在Pandas和Spark中也都有相应关键字。 Pandas:Pandas实现join操作有两个主要的API:merge和join。其中merge是Pandas的顶层接口(即可直接调用pd.merge方法),也是DataFrame的API,支持丰富的...
本文简要介绍pyspark.sql.DataFrame.to_pandas_on_spark的用法。 用法: DataFrame.to_pandas_on_spark(index_col=None) 将现有的 DataFrame 转换为 pandas-on-Spark DataFrame。 如果pandas-on-Spark DataFrame转换为Spark DataFrame,然后再转换回pandas-on-Spark,它将丢失索引信息,原始索引将变成普通列。
DataFrame可变性Pandas中DataFrame是可变的Spark中RDDs是不可变的,因此DataFrame也是不可变的 创建从spark_df转换:pandas_df = spark_df.toPandas()从pandas_df转换:spark_df = SQLContext.createDataFrame(pandas_df) 另外,createDataFrame支持从list转换spark_df,其中list元素可以为tuple,dict,rdd ...
本文首先介绍SQL查询操作的一般流程,对标SQL查询语句的各个关键字,重点针对Pandas和Spark进行介绍,主要包括10个常用算子操作。 01 SQL标准查询 谈到数据,必会提及数据库;而提及数据库,则一般指代关系型数据库(RMDB),操作关系型数据库的语言则是SQL(Structured Query Language)。SQL本质上仍然属于一种编程语言,并且有着...
from pyspark.sql import SparkSession# 初始化spark会话spark = SparkSession \ .builder \ .getOrCreate() spark_df = spark.createDataFrame(pandas_df) spark的dataframe转pandas的dataframe importpandasaspdpandas_df= spark_df.toPandas() 由于pandas的方式是单机版的,即toPandas()的方式是单机版的,所以参考...
实际上pandas中的query实现的正是对标SQL中的where语法,在实现链式筛选查询中非常好用,具体可参考Pandas用了一年,这3个函数是我的最爱……where语句,Pandas以API丰富而著称,所以自然是不会放过where关键字的,不过遗憾的是Pandas中的where和Numpy中的where一样,都是用于对所有列的所有元素执行相同的逻辑判断,可定制性...