"Thesechallenges stem from a lack of explainability, leading to c ompromised accuracy and diminished trustworthiness.To address this issue, this paper proposes an explainable neural network model, the Attention-SP-LSTM-FIG, s pecifically designed for productivity prediction in aircraft final assembly ...
长短期记忆神经网络(long shortterm memory networks,LSTM)是一种时间递归神经网络,是循环神经网络的一种变体,适合处理和预测时间序列中间隔和延迟相对较长的重要事件,这一技术特征与股票预测问题有着很高的契合度,将普通循环网络中的隐藏节点设计为自循环形式,记忆单元维持一个误差流,进而可以记忆长时期的有效信息,避免...
1. 数据收集首先,我们需要收集SP500股票价格数据。你可以从公开的数据源,如Yahoo Finance或Quandl,获取这些数据。这里我们使用pandas库来下载数据: import pandas as pd from yfinance import download # 下载SP500数据 sp500 = download('^GSPC', start='2010-01-01', end='2023-01-01')['Adj Close'] 2....
Face Anti-Spoofing简记1-Enhance the Motion Cues for Face Anti-Spoofing using CNN-LSTM Architecture,程序员大本营,技术文章内容聚合第一站。
kanesp / MLSTM-FCN forked from titu1994/MLSTM-FCN Watch 0 Star 0 Fork 122 Code Pull requests Actions Projects Security Insights Automate your workflow from idea to production GitHub Actions makes it easy to automate all your software workflows, now with world-class CI/CD. Build, test...
self.lstm_model = LSTMModel( d_feat=self.d_feat, hidden_size=self.hidden_size, num_layers=self.num_layers, dropout=self.dropout, ) if optimizer.lower() == "adam": self.train_optimizer = optim.Adam(self.lstm_model.parameters(), lr=self.lr) elif optimizer.lower() == "...
结合改进残差网络和 Bi-LSTM 的短期电力负荷预测 为充分挖掘电力负荷历史数据的潜在特征,提高短期负荷预测模型的预测精度,提出了一种由改进残差网络(ResNetPlus),注意力机制(Attention mechanism,AM)和双向长短期记忆... 李艳波,尹镨,陈俊硕,... - 《哈尔滨工业大学学报》 被引量: 0发表: 2023年 基于改进Bi-...
The ASUS PRIME H610M-R D4 ATX motherboard is designed to support latest 12th, 13th and 14th Gen Intel CPU's with LGA 1700 socket, Pentium Gold and Celeron Processors with H610 Intel Chipset. The H610M-R based motherboard is PCIe 4.0 Ready supporting up...
class ALSTM(Model): """ALSTM Model Parameters --- d_feat : int input dimension for each time step metric: str the evaluate metric used in early stop optimizer : str optimizer name GPU : str the GPU ID(s) used for training """ def...
为提高制造过程质量智能控制的控制效果,提出了一种基于双向长短时间记忆网络(Bidirectional LSTM,Bi-LSTM)的控制图失控模式识别方法.文中分析了其分类的基本原理,构建了控制图模式识别模型,并通过蒙特卡洛仿真方法生成仿真数据集,进行仿真实验验证.仿真实验结果表明,Bi-LSTM用于控制图模式识别,准确率相对多层感知机(MLP),...