Using the inverse matrix to solve equationsAx, B
To solve the system of equations using the inverse of a matrix, we will follow these steps:Step 1: Write the system of equations in matrix form The given equations are: 1. \(5x - y + z = 4\) 2. \(3x + 2y - 5z = 2\) 3. \(x + 3y
Left multiply both sides of the matrixequation( [(array)(cc)1& -2 2& -7(array)]⋅ [(array)cx y(array)]=[(array)c-7 -29(array)]) by the inversematrix( [(array)(cc)7/3& -2/3 2/3& -1/3(array)]).( ([(array)(cc)7/3& -2/3 2/3& -1/3(array)]⋅ [(array)...
(a) Write a matrix equation equivalent to the system for linear equations below: (i) x + y + 5z = 2 (ii) x + 2y + 7z = 3 (iii) 2x + y + 9z = 5 (b) Solve the system by this method of inverses. Use inverse matrices to find the solution of the given system of...
{ 1 } { 5 } $$-4 Left multiply both sides of the matricequation 1 1 $$ \frac { 1 } { 2 0 } - \frac { 1 } { 5 } \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 4 0 \\ - 1 \end{bmatrix} $$by the inversematrix[$$ \frac { 4 } { 5 } ( ...
Step 3 Left multiply both sides of the matrix equation by the inverse matrix.Step 4 Any matrix multiplied by its inverse is equal to all the time. . Step 5 Multiply . Tap for more steps... Step 5.1 Two matrices can be multiplied if and only if the number of columns in the first ...
Solving equations using inverse matrix: If we are given linear equations, then we can easily solve those equations using the matrices. The linear equations in matrix form are represented in the form of AX=B , where X is unknow...
【题目】Use an inverse matrix to solve each equation or system.$$ \left[ \begin{matrix} 3 四 5 \\ 6 四 2 \end{matrix} \right] X = \left[ \begin{matrix} - 2 四 6 \\ 4 四 1 2 \end{matrix} \right] $$ 相关知识点: ...
Leftmultiplyboth sides of thematrixequationby theinversematrix. ([1212−1212]⋅[1−111])⋅[xy]=[1212−1212]⋅[02]([1212-1212]⋅[1-111])⋅[xy]=[1212-1212]⋅[02] Anymatrixmultiplied by itsinverseis equal to11all the time.A⋅A−1=1A⋅A-1=1. ...
Use an inverse matrix to solve each equation or system.$$ \left[ \begin{matrix} 3 四 5 \\ 6 四 2 \end{matrix} \right] X = \left[ \begin{matrix} - 2 四 6 \\ 4 四 1 2 \end{matrix} \right] $$ 相关知识点: 试题来源: 解析 -1$$ \begin{matrix} 2 \\ 0 \end{matrix} ...