1.1 损失函数: 损失函数(Loss Function):损失函数用于衡量网络的预测输出和真实标签之间的差距。 图像目标识别通常使用互熵损失(Cross Entropy,又称为交叉熵)。交叉熵用于衡量预测概率分布和样本真实标签分布的差异。差异越小,预测分布越接近真实标签分布,其中预测概率最大的类别越可能是正确的类别。 1.2 在CNN的应用 ...
Cross-Entropy Loss (交叉熵损失)关于softmax的输入的Jacobian 当softmax 为网络的最后一层,且Loss 函数采用 Cross−Entropy 时,为了进行反向传播,需要计算 Cross−Entropy Loss 关于softmax 的输入的 Jacobian。对于单个样本来说,Cross−Entropy Loss的公式为 LCE=−∑k=1Cyilog(pi) 其中y=(y1,y2,⋯...
2. SoftmaxWithLoss结合softmax函数,多用于多类别分类。 *该loss预测的是网络最后的输出分别属于**多个类别的概率**,对于给定的label,其优化目标就是使得网络输出等于该label的概率值最大,因此,其bottom[0]和bottom[1]的C通道应该倍数关系(bottom[0]->shape[1] / bottom[1]-shape[1] = 类别的个数) caffe...
从形式上来看,这样的损失函数定义类似于信息论中的交叉熵(cross-entropy):(2)H[P]=∑j−P(j)...
cross entropy 的公式是 这里的 就是我们前面说的LogSoftmax。这玩意算起来比 softmax 好算,数值稳定还好一点,为啥不直接算他呢? 所以说,这有了 PyTorch 里面的torch.nn.CrossEntropyLoss(输入是我们前面讲的 logits,也就是 全连接直接出来的东西)。这个 CrossEntr...
所以先来了解一下常用的几个损失函数hinge loss(合页损失)、softmax loss、cross_entropy loss(交叉熵损失): 1:hinge loss(合页损失) 又叫Multiclass SVM loss。至于为什么叫合页或者折页函数,可能是因为函数图像的缘故。 s=WX,表示最后一层的输出,维度为(C,None),$L_i$表示每一类的损失,一个样例的损失是所...
softmax loss是由softmax和交叉熵(cross-entropy loss)组合而成,全称是softmax with cross-entropy loss,所以我们可以想见,它们是不同的,但是又有关系。 解答1:首先我们得知道什么是交叉熵。 在物理学有一个概念,就是熵,它表示一个热力学系统的无序程度。为了解决对信息的量化度量问题,香农在1948年提出了“信息...
softmax loss是由softmax和交叉熵(cross-entropy loss)组合而成,全称是softmax with cross-entropy loss,所以我们可以想见,它们是不同的,但是又有关系。 解答1:首先我们得知道什么是交叉熵。 在物理学有一个概念,就是熵,它表示一个热力学系统的无序程度。为了解决对信息的量化度量问题,香农在1948年提出了“信息...
softmax 和 cross-entropy 本来太大的关系,只是把两个放在一起实现的话,算起来更快,也更数值稳定。 cross-entropy 不是机器学习独有的概念,本质上是用来衡量两个概率分布的相似性的。简单理解(只是简单理解!)就是这样, 如果有两组变量: 如果你直接求 L2 距离,两个距离就很大了,但是你对这俩做 cross entropy...
Pytorch中的CrossEntropyLoss()函数 它是交叉熵的另外一种方式。 Softmax后的数值都在0~1之间,所以ln之后值域是负无穷到0。 然后将Softmax之后的结果取log,将乘法改成加法减少计算量,同时保障函数的单调性 。 NLLLoss的结果就是把上面的输出与Label对应的那个值拿出来(下面例子中就是:将log_output\logsoftmax_...