来自 知网 喜欢 0 阅读量: 5 作者: 林丽群 摘要: 文章针对贷款坏账问题,使用ABC-Boost算法及SMOTEENN混合采样技术建立了预测模型.实验表明,与Logistic Regression Classifier,Random Forest,XGBoost,LightGBM等主流模型进行对比,ABC-Boost+SMOTEENN混合采样模型能取得较好的预测效果. 年份: 2024 ...
ML之LoR:利用布鲁塞尔的creditcard数据集进行采样处理(欠采样{Nearmiss/Kmeans/TomekLinks/ENN}、过采样{SMOTE/ADASYN})同时采用LoR算法(PR和ROC评估)进行是否欺诈二分类 目录 利用布鲁塞尔的creditcard数据集进行采样处理(欠采样{Nearmiss/Kmeans/TomekLinks/ENN}、过采样{SMOTE/ADASYN})同时采用LoR算...
ML之LoR:利用布鲁塞尔的creditcard数据集进行采样处理(欠采样{Nearmiss/Kmeans/TomekLinks/ENN}、过采样{SMOTE/ADASYN})同时采用LoR算法(PR和ROC评估)进行是否欺诈二分类 目录 利用布鲁塞尔的creditcard数据集进行采样处理(欠采样{Nearmiss/Kmeans/TomekLinks/ENN}、过采样{SMOTE/ADASYN})同时采用LoR算法(PR和ROC评估)...
简介:ML之LoR:利用信用卡数据集(欠采样{Nearmiss/Kmeans/TomekLinks/ENN}、过采样{SMOTE/ADASYN})同时采用LoR算法(PR和ROC评估)进行是否欺诈二分类 目录 利用布鲁塞尔的creditcard数据集进行采样处理(欠采样{Nearmiss/Kmeans/TomekLinks/ENN}、过采样{SMOTE/ADASYN})同时采用LoR算法(PR和ROC评估)进行是否欺诈二分类...
ML之LoR:利用布鲁塞尔的creditcard数据集进行采样处理(欠采样{Nearmiss/Kmeans/TomekLinks/ENN}、过采样{SMOTE/ADASYN})同时采用LoR算法(PR和ROC评估)进行是否欺诈二分类 目录 利用布鲁塞尔的creditcard数据集进行采样处理(欠采样{Nearmiss/Kmeans/TomekLinks/ENN}、过采样{SMOTE/ADASYN})同时采用LoR算法(PR和ROC评估...