使用时要缩小参数范围再使用网格搜索 gini_thresholds = np.linspace(0, 0.5, 20)#在0到0.5之间取出20个有序的随机数 parameters = {'splitter': ('best', 'random') , 'criterion': ("gini", "entropy") , "max_depth": [*range(1, 10)] , 'min_samples_leaf': [*range(1, 50, 5)]#1到5...
创建一个随机森林分类器实例,并设定随机种子以保证结果的可重复性。# 创建随机森林分类器实例rf=Random...
apply(X) Apply trees in the forest to X, return leaf indices. decision_path(X) Return the decision path in the forest fit(X, y[, sample_weight]) Build a forest of trees from the training set (X, y). get_params([deep]) Get parameters for this estimator. predict(X) Predict class ...
python from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import GridSearchCV from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score # 加载数据集 iris = load_iris() X, y = iris.data, i...
test_size=0.25,random_state=1234)#使用网格法找出最优越模型参数fromsklearn.model_selectionimportGridSearchCVfromsklearnimporttree#预设各参数的不同选项值max_depth=[2,3,4,5,6] min_samples_split=[2,4,6,8] min_samples_leaf=[2,4,8,10,12]#将各参数的值以字典的形式组织起来parameters={'max_...
classsklearn.svm.SVC(C=1.0, kernel='rbf', degree=3, gamma=0.0, coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1, random_state=None) Parameters:(参数和属性均只列了常用参数和属性) ...
rfc = RandomForestClassifier() parameters = {'n_estimators': range(30,80,10),'max_depth':range(3,10,2), 'min_samples_leaf':[5,6,7],'max_features':[1,2,3]} grid_rfc = GridSearchCV(rfc,parameters,scoring='f1_macro') grid_rfc.fit(X,y) ...
随机森林(Random Forest): 一种集成学习方法,通过构建多个决策树并进行投票来提高分类准确性。 能有效减少过拟合,提高模型的稳定性。 可应用于信用卡欺诈检测等任务。 梯度提升树(Gradient Boosting Trees, GBT): 另一种集成学习算法,通过逐步添加新的弱分类器来纠正前一个模型的错误。
clf = RandomForestClassifier() # Choose some parameter combinations to try parameters = {'n_estimators': [4, 6, 9], 'max_features': ['log2', 'sqrt','auto'], 'criterion': ['entropy', 'gini'], 'max_depth': [2, 3, 5, 10], ...
) bagging.oob_score_ #随机森林fromsklearn.ensembleimportRandomForestClassifierrf =RandomForestClassifier...的随机性,训练速度快,抑制了过拟合,但增大了偏差。 #1、随机森林应用的是Bagging模型,而ET是使用所有的训练样本得到每棵决策树,也就是每棵决策树应用的是相同的全部训练样本; #2、随机森林是在 ...