make_blobs:多类单标签数据集,为每个类分配一个或多个正太分布的点集 make_classification:多类单标签数据集,为每个类分配一个或多个正太分布的点集,提供了为数据添加噪声的方式,包括维度相关性,无效特征以及冗余特征等 make_gaussian-quantiles:将一个单高斯分布的点集划分为两个数量均等的点集,作为两类 make_
X, y = make_blobs(n_samples=1000, n_features=2, centers=2, cluster_std=1.5, random_state=1) plt.style.use('ggplot') plt.figure() plt.title('Data') plt.scatter(X[:,0], X[:,1], marker='o', c=np.squeeze(y), s=30) X, y = make_blobs(n_samples=[100,300,250,400], ...
make_blobs 函数是为聚类或分类产生数据集,产生一个数据集和相应的标签 n_samples: 表示数据样本点个数,默认值100 n_features: 是每个样本的特征(或属性)数,也表示数据的维度,默认值是2 centers: 表示类别数(标签的种类数),默认值3 cluster_std 表示每个类别的方差,例如我们希望生成2类数据,其中一类比另一类具...
data = make_blobs(n_samples=100, centers =2,random_state=9)//生成数据集时 x_train, x_test, y_train,y_test=model_selection.train_test_split(x,y,test_size=0.2,random_state=0)//拆分数据集 X, y = make_regression(n_features...
sklearn 中的 make_blobs()函数 make_blobs() 是 sklearn.datasets中的一个函数 主要是产生聚类数据集,需要熟悉每个参数,继而更好的利用 官方链接:scikit-learn.org/dev/mo 函数的源码: def make_blobs(n_samples=100, n_features=2, centers=3, cluster_std=1.0, center_box=(-10.0, 10.0), shuffle=Tr...
利用sklearn.datasets.make_blobs生成数据 from sklearn.datasets.samples_generator import make_blobs #生成数据集 X,y=make_blobs(n_samples=50,centers=2,random_state=0,cluster_std=0.6) #n_samples=50意思取50个点,centers=2意思是将数据分为两 ...
sklearn.datasets.make_blobs(n_samples=100, n_features=2, centers=3, cluster_std=1.0, center_box=(-10.0, 10.0), shuffle=True, random_state=None) 参数含义: n_samples: int, optional (default=100) The total number of points equally divided among clusters. ...
sklearn中make_blobs的⽤法详情 ⽬录 1.调⽤make_blobs 2.make_blobs的⽤法 sklearn中的make_blobs函数主要是为了⽣成数据集的,具体如下:1.调⽤make_blobs from sklearn.datasets import make_blobs 2.make_blobs的⽤法 data, label = make_blobs(n_features=2, n_samples=100, centers=3,...
本文簡要介紹python語言中sklearn.datasets.make_blobs的用法。 用法: sklearn.datasets.make_blobs(n_samples=100, n_features=2, *, centers=None, cluster_std=1.0, center_box=(-10.0,10.0), shuffle=True, random_state=None, return_centers=False) ...
sklearn.datasets.make_blobs() [太阳]选择题 以下python代码结果错误的一项是? import matplotlib.pyplot as plt from sklearn.datasets import make_blobs data,label=make_blobs(n_samples=100,n_features=2,centers=2) plt.scatter(data[:, 0], data[: ,1], c=label) plt.show() A选项:该方法用于产...