make_blobs:多类单标签数据集,为每个类分配一个或多个正太分布的点集 make_classification:多类单标签数据集,为每个类分配一个或多个正太分布的点集,提供了为数据添加噪声的方式,包括维度相关性,无效特征以及冗余特征等 make_gaussian-quantiles:将一个单高斯分布的点集划分为两个数量均等的点集,作为两类 make_hasti...
X, y = make_blobs(n_samples=1000, n_features=2, centers=2, cluster_std=1.5, random_state=1) plt.style.use('ggplot') plt.figure() plt.title('Data') plt.scatter(X[:,0], X[:,1], marker='o', c=np.squeeze(y), s=30) X, y = make_blobs(n_samples=[100,300,250,400], ...
sklearn.datasets.make_blobs(n_samples=100, n_features=2, centers=None, cluster_std=1.0, center_box=(-10.0, 10.0), shuffle=True, random_state=None) 1 函数参数: 1.n_samples:可以是int,也可以是数组, 可选参数 (default=100) 如果为int,则表示所有簇的样本总数,这个总数在簇之间平均分配。 如...
make_blobs 函数是为聚类或分类产生数据集,产生一个数据集和相应的标签 n_samples: 表示数据样本点个数,默认值100 n_features: 是每个样本的特征(或属性)数,也表示数据的维度,默认值是2 centers: 表示类别数(标签的种类数),默认值3 cluster_std 表示每个类别的方差,例如我们希望生成2类数据,其中一类比另一类具...
确定sklearn.datasets模块中make_blobs函数的作用: make_blobs函数是sklearn.datasets模块中用于生成模拟的聚类数据集的工具。它生成的数据集具有高斯分布(正态分布),适用于聚类算法的测试、可视化和特征工程研究。 了解make_blobs函数的参数及其含义: n_samples: int或array-like,表示生成的样本总数或每个簇的样本数...
sklearn 中的 make_blobs()函数 make_blobs() 是 sklearn.datasets中的一个函数 主要是产生聚类数据集,需要熟悉每个参数,继而更好的利用 官方链接:https://scikit-learn.org/dev/modules/generated/sklearn.datasets.make_blobs.html 函数的源码: defmake_blobs(n_samples=100,n_features=2,centers=3,cluster_...
make_blobs()是 sklearn.datasets中的一个函数。 主要是产生聚类数据集,产生一个数据集和相应的标签。 函数的源代码如下: defmake_blobs(n_samples =100, n_features =2, centers =3, cluster_std =1.0, center_box = (-10.0,10.0), shuffle =True, random_state =None):"""Generate isotropic Gaussian...
sklearn.datasets.make_blobs(n_samples=100, n_features=2, centers=3, cluster_std=1.0, center_box=(-10.0, 10.0), shuffle=True, random_state=None) 参数含义: n_samples: int, optional (default=100) The total number of points equally divided among clusters. ...
本文簡要介紹python語言中sklearn.datasets.make_blobs的用法。 用法: sklearn.datasets.make_blobs(n_samples=100, n_features=2, *, centers=None, cluster_std=1.0, center_box=(-10.0,10.0), shuffle=True, random_state=None, return_centers=False) ...
sklearn 中 make_blobs模块 # 生成用于聚类的各向同性高斯blob sklearn.datasets.make_blobs(n_samples = 100,n_features = 2,center = 3,cluster_std = 1.0,center_box =( - 10.0,10.0),shuffle = True,random_state = None) 参数 n_samples: int, optional (default=100)...