LinearRegression类就是我们平时所说的普通线性回归,它的损失函数如下所示: 对于这个损失函数,一般有梯度下降法和最小二乘法两种极小化损失函数的优化方法,而scikit-learn中的LinearRegression类使用的是最小二乘法。通过最小二乘法,可以解出线性回归系数θ为: 验证方法:LinearRegression类并没有用到交叉验证之类的验...
sklearn中的逻辑回归接口如下: sklearn.linear_model.LogisticRegression(penalty='l2', *, dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver='lbfgs', max_iter=100, multi_class='auto', verbose=0, warm_start=False, n_jobs=...
由于LinearRegression没有考虑过拟合的问题,有可能导致泛化能力较差,这时损失函数可以加入正则化项,如果加入的是L2范数的正则化项,就是Ridge回归的损失函数,如下所示: 其中α是常数系数,需要进行调优, 是L2范数。 Ridge回归在不抛弃任何一个特征的情况下,缩小了回归系数(是一种缩放的模型),使得模型相对而言比较稳定,...
我们知道,逻辑回归有二元逻辑回归和多元逻辑回归。对于多元逻辑回归常见的有one-vs-rest(OvR)和many-vs-many(MvM)两种。而MvM一般比OvR分类相对准确一些。郁闷的是liblinear只支持OvR,不支持MvM,这样如果我们需要相对精确的多元逻辑回归时,就不能选择liblinear了。也意味着如果我们需要相对精确的多元逻辑回归不能使用L1...
使用sklearn中的库,一般使用线性回归器 首先,导入包:from sklearn.linear_model import LinearRegression 创建模型:linear =LinearRegression() 拟合模型:linear.fit(x,y) 模型的预测值:linear.predict(输入数据) 模型评估:计算mean_squared_error和r2_score ...
1. 线性回归的原理线性回归模型假设因变量与自变量之间存在线性关系,并试图找到最佳拟合直线来描述这种关系。模型的数学表示为:Y = β0 + β1X1 + β2X2 + ... + βn*Xn + ε其中,Y是因变量,X1, X2, ..., Xn是自变量,β0, β1, β2, ..., βn是回归系数,ε是误差项。回归系数表示了...
决定系数(coefficient of determination)是一个统计学概念,用来衡量线性回归模型对数据的拟合程度。它通常表示为 R²。R² 的值在 0 到 1 之间,值越接近 1 表示模型对数据的拟合程度越好。如果 R² 等于 1,则表示模型完美拟合数据;如果 R² 等于 0,则表示模型无法解释数据中的任何变化。
【机器学习】一文看尽 Linear Regression 线性回归 二 步骤 使用sklearn中的库,一般使用线性回归器 首先,导入包:from sklearn.linear_model import LinearRegression 创建模型:linear =LinearRegression() 拟合模型:linear.fit(x,y) 模型的预测值:linear.predict(输入数据) ...
线性回归(英语:linear regression)是利用称为线性回归方程的最小二乘函数对一个或多个自变量和因变量 之间关系进行建模的一种回归分析。这种函数是一个或多个称为回归系数的模型参数的线性组合。只有一个自变量 的情况称为简单回归,大于一个自变量情况的叫做多元回归 在线性回归中,数据使用线性预测函数来建...
sklearn linearregression() 参数 sklearn.linear_model.LinearRegression 是 scikit-learn 库中用于线性回归的类。下面是 LinearRegression 类的主要参数: 1.fit_intercept:布尔值,默认为 True。决定是否计算截距。如果设为 False,那么预测时 y 的估计值为 coef * X。 2.normalize:布尔值,默认为 False。决定是否...