最后,将聚类中心以黑色点的形式绘制在图表中。 四、注意事项 在使用KMeans算法时,需要根据实际数据选择合适的聚类数目n_clusters。聚类数目过少可能导致信息丢失,过多则可能产生过拟合。 初始质心的选择对KMeans算法的结果有一定影响。可以通过设置init参数为’k-means++’来优化初始质心的选择。 算法的收敛性受max_i...
KMeans算法的平均复杂度是O(knT),其中k是我们的超参数,所需要输入的簇数,n是整个数据集中的样本量,T是所需要的迭代次数(相对的,KNN的平均复杂度是O(n)。在最坏的情况下, KMeans的复杂度可以写作O(n**[(k+2)/p]),其中n是整个数据集中的样本量,p是特征总数。这个最高复杂度是由D. Ar...
非Circle数据集模型结果: 整体来看,上述两个数据集KMeans的综合表现优于DBSACN模型,不过这个只是一个简单的实验说明,就是为了熟练一下这两种常用聚类模型的使用,记录学习一下。
fromsklearn.clusterimportKMeansn_clusters=3cluster=KMeans(n_clusters=n_clusters,random_state=0).fit(X)#重要属性labels_,查看聚好的类别,每个样本所对应的类y_pred=cluster.labels_y_pred#KMeans因为并不需要建立模型或者预测结果,因此我们只需要fit就能够得到聚类结果了#KMeans也有接口predict...
[sklearn]聚类:K-Means算法/层次聚类/密度聚类/聚类评估,聚类(Clustering)简单来说就是一种分组方法,将一类事物中具有相似性的个体分为一类用的算法。具体步骤如下:从n...
Total Inertia越小,代表着每个簇内样本越相似,聚类的效果就越好。因此KMeans追求的是,求解能够让Inertia最小化的质心。实际上,在质心不断变化不断迭代的过程中,总体平方和是越来越小的。我们可以使用数学来证明,当整体平方和最小的时候,质心就不再发生变化了。如此,K-Means的求解过程,就变成了一个最优化问题。
聚类:将相似对象自动分组,常用的算法有:k-Means、 spectral clustering、mean-shift,常见的应用有:客户细分,分组实验结果。 聚类 降维:减少要考虑的随机变量的数量,常见的算法有:PCA(主成分分析)、feature selection(特征选择)、non-negative matrix factorization(非负矩阵分解),常见的应用有:可视化,提高效率。
1.1 KMeans算法关键概念:簇与质心 簇:KMeans算法将一组N个样本的特征矩阵X划分为K个无交集的簇,直观上看是一组一组聚集在一起的数据,在一个簇中的数据就认为是同一类。簇就是聚类的结果表现。 质心:簇中所有数据的均值U通常被认为这个簇的“质心”。
X,kmeans.cluster_centers_,"euclidean"),axis=1))/X.shape[0]) plt.plot(K,meandistortions,'bx-') plt.xlabel('k') plt.ylabel(u'平均畸变程度',fontproperties=font) plt.title(u'用肘部法则来确定最佳的K值',fontproperties=font) # 聚类效果的评价 ...
k-means聚类的核心是通过最小化样本点与其所在簇质心的平方误差,目标是使同一簇内的点尽可能相近。其数学表达为:假设数据分为k个簇,目标是找到一组质心[公式],使得所有样本点到其所属簇质心的距离平方和最小,公式为[公式],其中质心[公式]由所有簇中点的平均值决定。解决过程采用迭代法:首先随机...