compute_class_weight这个函数的作用是对于输入的样本,平衡类别之间的权重,下面写段测试代码测试这个函数: # coding:utf-8 from sklearn.utils.class_weight import compute_class_weight class_weight = 'balanced' label = [0] * 9 + [1]*1 + [2, 2] print(label) # [0, 0, 0, 0, 0, 0, 0,...
String form: <module 'sklearn.utils.class_weight' from '/home/software/anaconda3/envs/tf115/lib/python3.7/site-packages/sklearn/utils/class_weight.py'> 1. 2. sklearn.utils.class_weight.compute_class_weight sklearn.utils.class_weight.compute_class_weight(class_weight,classes,y)[source] Est...
1. 在:from sklearn.utils.class_weight import compute_class_weight里面可以看到计算的源代码。 2. 除了通过字典形式传入权重参数,还可以设置的是:class_weight = 'balanced',例如使用SVM分类: clf = SVC(kernel ='linear', class_weight='balanced', decision_function_shape='ovr') clf.fit(X_train, y_...
Sklearn本身使用此模块中的函数来构建我们所有使用的所有转换器和估算器。 其中有许多有用的函数,比如class_weight.compute_class_weight、estimator_html_repr、shuffle、check_X_y等等。您可以在自己的工作流程中使用它们,使您的代码更像Sklearn,或者在创建适合Sklearn API的自定义转换器和估算器时使用它们可能会很...
from sklearn.utils import compute_class_weight train_classes = train_generator.classes class_weights = compute_class_weight( "balanced", np.unique(train_classes), train_classes ) class_weights = dict(zip(np.unique(train_classes), class_weights)), class_weights In Jupyter No...
clf_class_weight = LogisticRegression(class_weight='balanced').fit(X, y) 2.底层逻辑 @_deprecate_positional_argsdefcompute_class_weight(class_weight,*,classes,y):"""Estimate class weights for unbalanced datasets.Parameters---class_weight : dict, 'balanced' or NoneIf 'balanced', class weights...
1. 在:from sklearn.utils.class_weight import compute_class_weight ⾥⾯可以看到计算的源代码。2. 除了通过字典形式传⼊权重参数,还可以设置的是:class_weight = 'balanced',例如使⽤SVM分类:clf = SVC(kernel = 'linear', class_weight='balanced', decision_function_shape='ovr')clf.fit(X_...
utils.class_weight.compute_class_weight(...) 估计不平衡数据集的类权重。 utils.class_weight.compute_sample_weight(...) 对于不平衡的数据集,按类别估算样本权重。 utils.deprecated([额外]) 装饰器,用于将功能或类标记为不推荐使用。 utils.estimator_checks.check_estimator(估算者) 检查估计器是否遵守scikit...
from .class_weight import compute_class_weight, compute_sample_weight File "C:\Python27\lib\site-packages\sklearn\utils\class_weight.py", line 7, in <module> from ..utils.fixes import in1d File "C:\Python27\lib\site-packages\sklearn\utils\fixes.py", line 318, in <module> from scipy...
16self.l2=LogisticRegression\(penalty='l2', dual=dual, tol=tol, C=C, fit\_intercept=fit\_intercept, intercept\_scaling=intercept\_scaling, class\_weight = class\_weight, random\_state=random\_state, solver=solver, max\_iter=max\_iter, multi\_class=multi\_class, verbose=verbose, warm\...