只有当cosx=0或1时, 这个等式才可能成立。因为cosx=0时,sinx=正负1,当cosx=1时,sinx=0.
不是啊。。。1-cos²X再开根号吧
1—cosxx不等于sin,1-cosx = 2sin²(x/2)。一般的,在直角坐标系中,给定单位圆,对任意角α,使角α的顶点与原点重合,始边与x轴非负半轴重合,终边与单位圆交于点P(u,v),那么点P的纵坐标v叫做角α的正弦函数,记作v=sinα。通常,我们用x表示自变量,即x表示角的大小,用y表示函数值,这...
这样
1—cosxx不等于sin,1-cosx = 2sin²(x/2)。一般的,在直角坐标系中,给定单位圆,对任意角α,使角α的顶点与原点重合,始边与x轴非负半轴重合,终边与单位圆交于点P(u,v),那么点P的纵坐标v叫做角α的正弦函数,记作v=sinα。通常,我们用x表示自变量,即x表示角的大小,用y...
sinx与cosx都是小于等于1的,tanx有可能大于一有可能等于一,也有可能小于一
1-cosx~1/2x^2 a^x-1~xlna e^x-1~x ln(1+x)~x (1+Bx)^a-1~aBx [(1+x)^1/n]-1~1/nx loga(1+x)~x/lna 求极限基本方法有:1、分式中,分子分母同除以最高次,化无穷大为无穷小计算,无穷小直接以0代入;2、无穷大根式减去无穷大根式时,分子有理化;3、运用洛必达法则,...
根据同角的关系,sin²x+cos²x=1,可得1-(cosx)²等价于sin²x。等价无穷小是无穷小的一种。在同一点上,这两个无穷小之比的极限为1,称这两个无穷小是等价的。等价无穷小也是同阶无穷小。从另一方面来说,等价无穷小也可以看成是泰勒公式在零点展开到一阶的泰勒展开...
不能啊。(sinx)^2+(cosx)^2=1 恒成立。如果同时唯一,则左边=2,这是矛盾的。。。
根据同角的关系,sin²x+cos²x=1,可得1-(cosx)²等价于sin²x。等价无穷小是无穷小的一种。在同一点上,这两个无穷小之比的极限为1,称这两个无穷小是等价的。等价无穷小也是同阶无穷小。从另一方面来说,等价无穷小也可以看成是泰勒公式在零点展开到一阶的泰勒展开...