方法一: 利用积差化和公式求解 原式= ∫ 1/2 (cosx-cos3x)sin3x dx = 1/2 ∫ cosx•sin3x dx - 1/2 ∫ cos3x•sin3x dx = 1/4 ∫(sin2x +sin4x)dx - 1/12 sin²3x = - 1/16cos4x - 1/8 cos2x - 1/12 sin²3x + C方法二: 展开 原式= ∫ sinx•2sinxcosx• ...
fsin2xIntan xdx = f2 sin xcos x In ta xdx = f In tan xd sin2x-|||-=sin2 x In tan x- fsin2xcot xsec2 xdx= sin2 In tan x-f(1-cos2x)cot x sec2 xdx-|||-=sin^2xlntanx-∫cotxsec^2xdx+∫cotxdx=sin^2xlntanx-∫1/(sinxcosx)dx+∫cotxdx-|||-=sin2xIn tan x- [2 ...
解法1原式=1dx 12sinxcos.x+2sin.x 2sinx( + ).112 sin'x(+cosx)d.x d(cosx)(1-cos x) ( 1+ cosx)1dt 2(1-t2)(1+t)1118(1-t)8(1+t)8(1+t)2dt = 14(1+t)cos.r-1 1+ ..+14( 1+ )解法2原式=11dx dx2sinxcosx-+2sinx x2x2sin 22+tan 2x12dtan xxxx2 cos 2tan ...
试题来源: 解析 ∫2sinxcos²xdx=-2∫cos²xd(cosx)=-2/3cos³x+c 结果一 题目 求解不定积分 ∫cosx sin2x dx 答案 ∫2sinxcos²xdx=-2∫cos²xd(cosx)=-2/3cos³x+c 相关推荐 1 求解不定积分 ∫cosx sin2x dx 反馈 收藏 ...
sin(2x)sin(2x) 将sin(2x)sin(2x)书写为一个函数。 f(x)=sin(2x)f(x)=sin(2x) 通过计算导数f(x)f(x)的不定积分求函数F(x)F(x)。 F(x)=∫f(x)dxF(x)=∫f(x)dx 建立要求解的定积分。 F(x)=∫sin(2x)dxF(x)=∫sin(2x)dx ...
一、从基础开始:sin 的积分 在攻克 sin2x 之前,先要复习一下 sin 函数的基本积分。你知道 sin 的积分是 -cos 吗?这个公式很重要,是解决 sin2x 积分的关键! 二、sin2x 积分的“秘密武器”:换元法 sin2x 积分的关键在于如何处理 2x 这个“捣蛋鬼”。这时候,我们就需要运用换元法! 1. 定...
运用分部积分法,具体求解过程如下:∫e^x·sin2xdx =e^x·sin2x-2∫e^xcos2xdx =e^x·sin2x-2[e^x·cos2x+2∫e^x·sin2x]dx =e^x·sin2x-2e^x·cos2x-4∫e^x·sin2x dx 得5∫e^x·sin2xdx=e^x·sin2x-2e^x·cos2x+C1 故∫e^x·sin2xdx=1/5·e^x·(sin2x-2cos...
高数数学不定积分分部积分法求解∫(x^2)sin2xdx。#微博视频号打卡计划#【为何许多大学生都不懂顾名思义不定积分结果不唯一?】我以后口舌生疮勿吃牛黄解毒片哎,否则上吐下泻活受罪啊!#学习打卡#丰沛的高数数学分部积分法唉!bgm:light-it-up。
【数学之美】团队为您解答,若有不懂请追问,如果解决问题请点下面的“选为满意答案”。
解:∫2sinxcos²xdx=-2∫cos²xd(cosx)=-2/3cos³x+c