结果1 结果2 题目反函数 cos2x 和 sin2x 请把具体过程留下. 谢谢了 相关知识点: 试题来源: 解析 y=cos2x arccosy=2x x = 1/2 arccosy cos2x 反函数 y = 1/2 arccosx y=sin2x arcsiny=2x x = 1/2 arcsiny sin2x 反函数 y = 1/2 arcsinx 分析总结。 反函数cos2x和sin2x请把具体过程留...
\displaystyle(2k\pi-\frac{\pi}{2},2k\pi],[2k\pi+\pi,2k\pi+\frac{3\pi}{2})(k\in Z)上单减。 \displaystyle[2k\pi,2k\pi+\frac{\pi}{2}),(2k\pi+\frac{\pi}{2},2k\pi+\pi](k\in Z)上单增。 ⑥极值: 当\displaystyle x=2k\pi时,有极小值y=1; 当\displaystyle x=2k\pi+...
如图,正弦曲线y=sin2x,余弦曲线y=cos2x与两直线x=0,x=π2所围成的阴影部分的面积为___yt o ( π )/2 χ
f(x)=cos2x,∵ω=2,∴T=π,∵余弦函数为偶函数,∴f(x)为最小正周期为π的偶函数。故选B函数解析式利用二倍角的余弦函数公式化简,找出ω的值,代入周期公式求出函数的最小正周期,再利用余弦函数的奇偶性判断即可. 结果三 题目 函数是( ) A. 最小正周期为的奇函数 B. 最小正周期为的偶函数 C. 最...
x²sin2y先对x求导 sin2y与x无关,相当于常数项 x²对x求导为2x,因此先对x求偏导得到:2xsin2y 然后,对x求得的偏导再对y求导 2x与y无关,相当于常数项 sin2y先对外函数求导,得到cos2y 再对内函数2y进行求导,得到2;最后,得出结果:(2xsin2y)*2=4xcos2y ...
解析 y=cos2x=sin(2x+π/2)=sin[2(x+π/4)] 即sin2x的图像向左平移π/4单位得到y=cos2x 分析总结。 即sin2x的图像向左平移4单位得到ycos2x结果一 题目 sin2x与cos2x怎么转换? 答案 y=cos2x=sin(2x+π/2)=sin[2(x+π/4)]即sin2x的图像向左平移π/4单位得到y=cos2x相关推荐 1sin2x与cos...
sin2x=2sinxcosx。如果X是一个角度的话,那么它的原公式是:sin(X+Y)=sinXcosY+cosXsinY。这其实是由两角和的正弦公式,由sin(x+y)=sinxcosy+cosxsiny得到。此外,还有几个三角恒等式:cos(x-y)=cosxcosy+sinxsiny sin(x-y)=sinxcosy-cosxsiny 想推导出各种二倍角公式,只需将和角公式...
2.正弦函数、余弦函数、正切函数的图象和性质函数y=sin xy=cos xy=tan x个yyAA图象11T2TTTT209xxx-1{x|x∈R且x≠定义x∈Rx∈R域+kr,k∈Z}2值域⑤⑥⑦⑧单调上递增,k∈Z;上递增,k∈Z;12性9①上递增,k∈Z上递减,k∈Z上递减,k∈ZT=3x=⑤时,最时,ymax=1(k∈Z);ymax=1(k∈Z);无最值...
y=sin2xcos2x= 1 2sin4x∴T= 2π w= 2π 4= π 2∵-1≤sin4x≤1ymax= 1 2故答案为: π 2; 1 2. 先根据二倍角公式对函数进行化简后可直接得到其最大值,再由T= 2π w可求出最小正周期. 本题考点:二倍角的正弦;三角函数的周期性及其求法. 考点点评:本题主要考查二倍角公式的应用和正弦...
首先,我们知道:cos2x = cos^2 x - sin^2 x sin2x = 2sinxcosx 所以,y = cos2x + sin2x 可以化为:y=−sin(x)∗∗2+2∗sin(x)∗cos(x)+cos(x)∗∗2 再将上面得到的式子合并同类项:y=sqrt(2)∗sin(2∗x+pi/4)所以...