Evaluate the following indefinite integral: \int \dfrac{cos(ln(x))}{x} dx. Evaluate the indefinite integral, int3x^3+5x^2+5x-5 x^2-1 dx. Evaluate the indefinite integral of [ (x^2 + x + 1) / (x^3 + x) ] dx Evaluate the indefinite integral of (1)/( (x) sqrt(x^4 -4...
Integrate the functions (2cosx-3sinx)/(6cosx+4sinx) 02:30 Integrate the functions 1/(cos^(2)x(1-tanx)^(2)) 01:57 Integrate the functions (cossqrtx)/(sqrtx) 01:11 Integrate the functions sqrt(sin2x)cos2x 01:48 Integrate the functions (cosx)/(sqrt(1+sinx)) 01:34 Integrate the...
int sin2x cos2xdx 01:01 Find int(sin2xcos2xdx)/(sqrt(9-cos^4(2x))) 01:35 intsinxsqrt(1+cos2xdx) 03:26 int a^(x)cos2xdx 04:27 int(1+x)cos2xdx 02:02 Evaluate: intx^2cos2x\ dx 04:59 Evaluate: intxsinxcos^2x\ dx 07:10 int sin ^ (2) x * cos2xdx 01:51 int ...
The sin 2x formula is the double angle identity used for the sine function in trigonometry. It is sin 2x = 2sinxcosx and sin 2x = (2tan x)/(1 + tan^2x). On the other hand, sin^2x identities are sin^2x - 1- cos^2x and sin^2x = (1 - cos 2x)/2.
2elpha2 第一个注意到分母可以变成【3+cos(2x)】/2而正好sin(2x)dx=-dcos(2x)/2题目就转化为-∫dcos(2x)/【3+cos(2x)】 2022-01-23 12:134回复 晓之车高山老师 其实up表达的意思就是,被积函数某个地方稍有改动,对应不定积分表达式就可能有很大的变化,甚至完全不同 2022-01-24 03:072回复 QNのstar...
Answer to: Evaluate the integral. Integral of cos^2 x sin 2x dx. By signing up, you'll get thousands of step-by-step solutions to your homework...
sin2(x)=1−cos2(x)sin2(x)=1−cos2(x) ∫sin3(x)cos2(x)dx=∫(1−cos2(x))cos2(x)sin(x)dx∫sin3(x)cos2(x)dx=∫(1−cos2(x))cos2(x)sin(x)dx du/dx=−sin(x)du/dx=−sin(x) ...
百度试题 结果1 题目The integral of cos(x) dx is ___. A. sin(x) B. -sin(x) C. cos(x) D. -cos(x) 相关知识点: 试题来源: 解析 A。对 cos(x)积分得 sin(x)。选项 B、C、D 都不符合。反馈 收藏
Answer to: Compute the indefinite integral. \int \frac{1 - \sin^2 x}{\cos x} dx By signing up, you'll get thousands of step-by-step solutions to...
How do you find the integral of sin(x21)dx ? https://socratic.org/questions/how-do-you-find-the-integral-of-sin-x-1-2-dx ∫sin(x21)dx=2sin(x21)−2x21cos(x21)+c ... Taking the Derivative of 3xsin(x2), which step is wrong? https://math.stackexchange.com/q/2732855 As Adria...