Siamese CNN-LSTM 模型的验证集和测试集预测准确率分别达到95.86%和92.56%,较最优对照模型(CNN-LSTM)提升21.43%和15.64%且验证集RMSE 和MAE 显著降低,在复杂工况下表现出优异的预测精度和鲁棒性,为复杂工况下的变形预测提供了新的技术手段,具备广泛...
super(SiameseLSTM, self).__init__() self.lstm= nn.LSTM(input_size=input_size, hidden_size=10, num_layers=1, batch_first=True) self.fc=nn.Sequential( nn.Linear(20, 1), )defforward(self, data1, data2): out1, (h1, c1)=self.lstm(data1) out2, (h2, c2)=self.lstm(data2) p...
importtorchfromtorchimportnnfromtorch.utils.dataimportDataLoaderimportpandas as pdfromdatasetIteraterimportDatasetIteraterimportjiebafromwordEmbeddingimportWordEmbeddingfromsiameseLSTMimportSiameseLSTMimportnumpy as npfromdataInitialimportDataInitial word=WordEmbedding()"""注意,转移到GPU步骤: (1)设置种子:torch.cuda....
Aiming at the problem that Siamese-LSTM model has poor ability to extract similar text features, an improved Siamese-LSTM text similarity model is proposed. This method introduces an attention mechanism to assign greater weight to similar words, and enhance the recognition ability of simi...
siamese lstm代码 引言: 我们在测试过程中经常会遇到批量添加数据的情况,并且这些数据很多时候是具有唯一性的。 比如说当前项目中需要创建一个添加用户的脚本,这些用户都是唯一的,当时采取的是创建file类型的参数,将参数用excel拖曳下来(tester001-tester1000)保存成dat类型的文档,如果参数数量很小这种方案也还算切实可行...
The idea is rather simple, train the siamese-LSTM on English labeled data first, and transfer neural network's weight to initialize Spanish model. That is a quick and not fully extended attempt. As we can see from above, the result get better using 2 layer LSTM, but transfer result still...
Siamese LSTM网络计算相似性 ssim 结构相似性指数 一、结构相似性(structural similarity) 自然图像具有极高的结构性,表现在图像的像素间存在着很强的相关性,尤其是在空间相似的情况下。这些相关性在视觉场景中携带着关于物体结构的重要信息。我们假设人类视觉系统(HSV)主要从可视区域内获取结构信息。所以通过探测结构...
Add a description, image, and links to the siamese-lstm topic page so that developers can more easily learn about it. Curate this topic Add this topic to your repo To associate your repository with the siamese-lstm topic, visit your repo's landing page and select "manage topics." ...
针对Siamese-LSTM模型对相似文本特征提取能力差的问题,提出了一种改进Siamese-LSTM的文本相似模型,该方法引入注意力机制,对相似词分配更大的权重,增强了对文本中相似词的识别能力,同时又引入目前先进的预训练模型BERT,提高相似文本上下文中不同词的交互能力,加强词与词之间的关联度,从而实现对相似与不相似文本的识别.实...
首先,对应用程序进行控制流与数据流分析形成序列特征表示;然后,根据词向量嵌入模型将序列特征转变为特征向量表示,输入孪生网络长短期记忆(LSTM,long short term memory)网络中进行程序特征自学习;最后,将学习到的程序特征通过相似性度量实现重打包应用的检测。在公开数据集AndroZoo上测试发现,重打包应用检测的精准率达到...