在总结栈(Stack)这个数据结构时候,栈有一种应用是计算算术表达式的 —— 中缀转后缀的。个人对这个算法很感兴趣,就特意找了一下相关的文章,发现中缀表达式转成后缀表达式的算法,有一个专门的名称,叫做调度场算法(Shunting Yard Algorithm)。 网上大多是讲解具体的编程实现,都缺乏探讨这个算法的实现思想,自己看得非常的迷糊,所以
大致上伪代码是这样: /*Shunting Yard AlgorithmIF it's an operand THEN push into operand stackIF operand stack has only 1 item THEN continue to next tokenELSE IF operand stack has more than 2 items THENIF operator stack has '+', '-', '/', '*' at topIF next token is also an opera...
1*(2+3) 这就是一个中缀表达式,运算符在数字之间,计算机处理前缀表达式和后缀表达式比较容易,但处理中缀表达式却不太容易,因此,我们需要使用shunting-yard Algorithm(调度场算法)来将中缀表达式转换为后缀表达式(即逆波兰表达式),然后求解。 上面的中缀表达式转后缀表达式后为: 1 2 3 + * 调度场算法 为了将中缀表...
网络调度场算法 网络释义 1. 调度场算法 中缀表达式转换为后缀表达式(逆波兰表达式),即调度场算法(shunting yard algorithm)1.建立运算符栈用于运算符的存储,此… www.cnblogs.com|基于6个网页
中缀表达式转换为后缀表达式(逆波兰表达式),即调度场算法(shunting yard algorithm) 1.建立运算符栈用于运算符的存储,此运算符遵循越往栈顶优先级越高的原则。 2.预处理表达式,正、负号前加0(如果一个加号(减号)出现在最前面或左括号后面,则该加号(减号) 为正负号)。
The shunting yard algorithm is a simple technique for parsing infix expressions containing binary operators of varying precedence. It was first described by Edsgar Dijkstra in 1961. In general, the algorithm assigns to each operator its correct operands, taking into account the order of precedence....
使用逆波兰表达式(Reverse Polish notation)以及调度场算法(Shunting-yard algorithm)实现的通用计算框架。暂不支持Function。 仅使用Java SE 6实现。(单元测试用到了mockito) 程序入口: com.dewafer.rpncalculator.IntegerMathematicalDemo:实现了加减乘除四则整数运算。
Jump to:navigation,search {- Reference implementation of shunting yard algorithm. Requires: Data.Char, Data.List. This implementation is not error-tolerant; an exception will occur on any incorrect input. Note: Unary + and - have precedence higher than * and / but lower than ^. -}data(Numa...
After all this, the algorithm has grown a bit, and is a little trickier to get right in all the corner cases—but it’s still pretty simple, andcertainlyless work than a full-blown syntax-directed parser! In my opinion, it’s a shame that the shunting-yard algorithm isn’t more widel...
此函数可用于计算写为字符串(字符数组)的方程。 该函数的基础是Shunting yard算法,如在C#中示例: https : //rosettacode.org/wiki/Parsing/Shunting-yard_algorithm 调车码算法是一种解析数学表达式的方法在后缀表示法中以后缀表示法指定。 例子结果= EvalEquation('1 + 2 /(2 * 3)'); 显示(结果) 1.3333 ...