MobileNet则是采用了depthwise separable convolution代替传统的卷积操作,在几乎不影响准确率的前提下大大降低计算量,具体可以参考MobileNets-深度学习模型的加速。Xception主要也是采用depthwise separable convolution改进Inception v3的结构。 该文章主要采用channel shuffle、pointwise group convolutions和depthwise separable convolu...
轻量级神经网络---MobileNet,从v1到v3 MobileNetv1 论文地址:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications 该论文提出了深度可分离卷积 深度可分离卷积就是将普通卷积拆分成为一个深度卷积和一个逐点卷积。 标准卷积操作: 输入一个12×12&ti...轻量级...
文中Xception 实验部分是非常详细的,实现细节可参见论文。 Xception 小结: Xception 是基于 Inception-V3,并结合了 depth-wise convolution,这样做的好处是提高网络效率,以及在同等参数量的情况下,在大规模数据集上,效果要优于 Inception-V3。这也提供了另外一种「轻量化」的思路:在硬件资源给定的情况下,尽可能的增...
Xception主要也是采用depthwise separable convolution改进Inception v3的结构。 该文章主要采用channel shuffle、pointwise group convolutions和depthwise separable convolution来修改原来的ResNet单元,接下来依次讲解。 channel shuffle的思想可以看下面的Figure 1。这就要先从group操作说起,一般卷积操作中比如输入feature map的...
MobileNet v3使用了 NAS 和 NetAdapt 算法搜索最优的模型结构,同时对模型一些结构进行了改进,在 MobileNet_V2的具有线性瓶颈的倒置残差块基础上引入MnasNet的Squeeze-and-Excitation注意力机制,不满足准则一和三。 ShuffleNet v1利用分组点卷积来降低参数量,利用通道重排操作来增强不同通道之间的交互和融合。使用分组卷积...
另一个需要提到的典型网络是 Xception,它的基本思想是,在 Inception V3 的基础上,引入沿着通道维度的解耦合,基本不增加网络复杂度的前提下提高了模型的效果,使用Depthwise Seperable Convolution实现。 Xception虽然不是出于轻量级的考虑而设计的模型,但是由于使用了pointwise convolution和depthwise convolution的结合,实际上也...
论文标题:Searching for MobileNetV3 论文作者:Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, Quoc V. Le, Hartwig Adam 论文地址:https://arxiv.org/abs/1905.02244.pdf 参考的 MobileN ...
论文-MobileNet-V1、ShuffleNet-V1、MobileNet-V2、ShuffleNet-V2、MobileNet-V3 1、结构对比 1)MobileNet-V1 2)ShuffleNet-V1 3)MobileNet-V2 4)ShuffleNet-V2
在学习ShuffleNet内容前需要简单了解卷积神经网络和MobileNet的相关内容,大家可以去看我之前的一篇博客MobileNet发展脉络(V1-V2-V3),🆗,接下来步入正题~ 卷积神经网络被广泛应用在图像分类、目标检测等视觉任务中,并取得了巨大的成功。然而,卷积神经网络通常需要较大的运算量和内存占用,在移动端以及嵌入式设备等资源受限...
v2的网络结构,没有明确提到v3,但是其中的一些变形作为了v3版本。