SGDClassifier(loss=’hinge’, penalty=’l2’, alpha=0.0001, l1_ratio=0.15, fit_intercept=True, max_iter=None, tol=None, shuffle=True, verbose=0, epsilon=0.1, n_jobs=1, random_state=None, learning_rate=’optimal’, eta0=0.0, power_t=0.5, class_weight=None, warm_start=False, average...
3. alpha:正则化强度,它控制正则化项的权重。alpha越大,正则化项的影响越大,可以有效地避免过拟合。4. max_iter:最大迭代次数,SGD分类器使用随机梯度下降算法进行训练,因此需要设置最大迭代次数。5. learning_rate:学习率,它控制每次迭代时更新模型参数的步长大小。常见的学习率策略包括constant、optimal和...
用法: classsklearn.linear_model.SGDClassifier(loss='hinge', *, penalty='l2', alpha=0.0001, l1_ratio=0.15, fit_intercept=True, max_iter=1000, tol=0.001, shuffle=True, verbose=0, epsilon=0.1, n_jobs=None, random_state=None, learning_rate='optimal', eta0=0.0, power_t=0.5, early_stopp...
利用梯度来求解参数。 sklearn.linear_model.SGDClassifier(loss=’hinge’, penalty=’l2’, alpha=0.0001, l1_ratio=0.15, fit_intercept=True, max_iter=None, tol=None, shuffle=True, verbose=0, epsilon=0.1, n_jobs=1, random_state=None, learning_rate=’optimal’, eta0=0.0, power_t=0.5, clas...
clf_svm=SGDClassifier(loss='log',penalty='l2',alpha=1e-3,n_iter=5,random_state=42).fit(data_train_tfidf,data_train_loc.ravel()) X_new_counts=count_vect.transform(data_test.ravel()) X_new_tfidf=tfidf_transformer.transform(X_new_counts) ...
1、Optuna Optuna 是一个开源的超参数优化框架,它可以自动为机器学习模型找到最佳超参数。 最基本的(...
sklearn.linear_model.SGDClassifier(loss=’hinge’, penalty=’l2’, alpha=0.0001, l1_ratio=0.15, fit_intercept=True, max_iter=None, tol=None, shuffle=True, verbose=0, epsilon=0.1, n_jobs=1, random_state=None, learning_rate=’optimal’, eta0=0.0, power_t=0.5, class_weight=None, warm...