2.深度学习主流模型与梯度下降 下表列举了自然语言处理(NLP),计算机视觉(CV),推荐系统(Recommendation System,RS),强化学习(Reinforcement Learning,RL)这四个方向的主流模型使用优化器的情况,可以看出在NLP领域AdamW(AdamWeightDecayOptimizer)使用比较普遍,CV领域SGD和momentum使用比较普遍,推荐领域比较杂,强化学习领域Adam...
梯度下降优化算法SGD with momentum 梯度下降优化函数 梯度下降法(Gradient Descent) 梯度下降(GD)是将风险函数、损失函数最小化的一种常用的方法,是神经网络模型训练最常用的优化算法。对于深度学习模型,基本都是采用梯度下降算法来进行优化训练的。 基本原理 目标函数J(θ)关于参数θ的梯度是目标函数上升最快的方向。
3. Momentum 为了抑制SGD的震荡,SGDM认为梯度下降过程可以加入惯性。可以简单理解为:当我们将一个小球从山上滚下来时,没有阻力的话,它的动量会越来越大,但是如果遇到了阻力,速度就会变小。SGDM全称是SGD with momentum,在SGD基础上引入了一阶动量: vt=γvt−1+η∇J(θ) ...
容易陷入局部最优:受到噪声样本的影响较大。 二、SGDM(SGD with Momentum) 原理:SGDM在SGD的基础上引入了动量项,使得参数更新具有惯性。动量项可以看作是之前梯度更新的累积,有助于加速收敛并减少震荡。 特点: 加速收敛:动量项使参数更新具有惯性。 减小震荡:能够平滑梯度方向的变化。 需要调整额外的超参数:除了学习...
SGD全称Stochastic Gradient Descent,随机梯度下降,1847年提出。每次选择一个mini-batch,而不是全部样本,使用梯度下降来更新模型参数。它解决了随机小批量样本的问题,但仍然有自适应学习率、容易卡在梯度较小点等问题。 1.2 SGDM SGDM即为SGD with momentum,它加入了动量机制,1986年提出。
3. Momentum 为了抑制SGD的震荡,SGDM认为梯度下降过程可以加入惯性。可以简单理解为:当我们将一个小球从山上滚下来时,没有阻力的话,它的动量会越来越大,但是如果遇到了阻力,速度就会变小。SGDM全称是SGD with momentum,在SGD基础上引入了一阶动量: vt=γvt−1+η∇J(θ)vt=γvt−1+η∇J(θ...
SGDM即为SGD with momentum,它加入了动量机制,1986年提出。 如上所示,当前动量V由上一次迭代动量,和当前梯度决定。第一次迭代时V0=0,由此可得到前三次迭代的动量 由此可见t迭代的动量,其实是前t-1迭代的梯度的加权和。λ为衰减权重,越远的迭代权重越小。从而我们可以发现,SGDM相比于SGD的差别就在于,参数更新时...
优化器-SGD、SGD with momentum、Adagrad、RMSProp、Adam 一、SGD(梯度下降) 在多变函数中,梯度是一个方向,梯度的方向指出了函数在给定点上升最快的方向,或者说指引了函数值增大的方向,因此我们只要考虑往梯度的反方向走,就至少能走到极小值,可能能走到全局最小值。
SGD with Momentum 为了抑制SGD的震荡,SGDM认为梯度下降过程可以加入惯性。下坡的时候,如果发现是陡坡,那就利用惯性跑的快一些。SGDM全称是SGD with momentum,在SGD基础上引入了一阶动量: 一阶动量是各个时刻梯度方向的指数移动平均值,约等...
SGD with Momentum 为了抑制SGD的震荡,SGDM认为梯度下降过程可以加入惯性。下坡的时候,如果发现是陡坡,那就利用惯性跑的快一些。SGDM全称是SGD with momentum,在SGD基础上引入了一阶动量: 一阶动量是各个时刻梯度方向的指数移动平均值,约等于最近 1/(1-β1) 个时刻的梯度向量和的平均值。