首先在速度方面,很显然:SGD < adam < adamw SGD最大的缺点是下降速度慢,而且可能会在沟壑的两边持续震荡,停留在一个局部最优点。 SGD缺点:容易困在局部最优的沟壑里面。 Adam缺点: Adam缺点一:可能不收敛 SGD没有用到二阶动量,因此学习率是恒定的。而Adam的二阶动量随着固定时间窗口内的积累,使得vt可能会时...
实验角度看,adam 效率高呀, sgd 慢的离谱.
AdamW 那Adam似乎已经很完美了,但是终于有人注意到一个魔鬼细节,藏在weight decay中(W就是从这里来...
Adam算法:momentum + rmsprop AdamW: Adam + 权重衰减。权重衰减就是每次更新参数后,都对参数减去一个很小的值,防止参数过大,用于提高模型的泛化性。 L2正则 VS weight decay 两个出发点不一样,在SGD的时候一样。但是在Adam不一样。
AdamW = Adam + Weight decay 这么简单为什么还能是一篇论文呢?原因是,大家通常都会把L2L2正则化和weight decay混为一谈,实现L2L2正则化时并不会真的去在损失函数上加一项,而是计算完梯度后给梯度加上weight decay。Adam刚出时,大家实现的Adam with weight decay也是计算完梯度后对梯度进行weight decay,也就是: ...
深度学习基础入门篇[三]:优化策略梯度下降算法:SGD、MBGD、Momentum、Adam、AdamW 1.梯度下降算法(优化器) 1.1 原理解释 如果我们定义了一个机器学习模型,比如一个三层的神经网络,那么就需要使得这个模型能够尽可能拟合所提供的训练数据。但是我们如何评价模型对于数据的拟合是否足够呢?那就需要使用相应的指标来评价它的...
深度学习基础入门篇[三]:优化策略梯度下降算法:SGD、MBGD、Momentum、Adam、AdamW 1.梯度下降算法(优化器) 1.1 原理解释 如果我们定义了一个机器学习模型,比如一个三层的神经网络,那么就需要使得这个模型能够尽可能拟合所提供的训练数据。但是我们如何评价模型对于数据的拟合是否足够呢?那就需要使用相应的指标来评价它的...
adam和adamW 不等价。 而在常见的深度学习库中只提供了L2正则,并没有提供权重衰减的实现。这可能就是导致Adam跑出来的很多效果相对SGDwithMomentum有偏差的一个原因。Adamwith L2...学习率算法中并不等价,只有在标准SGD的情况下,可以将L2正则和Weight Decay看做一样。特别是,当与自适应梯度相结合时,L2正则化导致...
下表列举了自然语言处理(NLP),计算机视觉(CV),推荐系统(Recommendation System,RS),强化学习(Reinforcement Learning,RL)这四个方向的主流模型使用优化器的情况,可以看出在NLP领域AdamW(AdamWeightDecayOptimizer)使用比较普遍,CV领域SGD和momentum使用比较普遍,推荐领域比较杂,强化学习领域Adam使用比较普遍。
Juliuszh:一个框架看懂优化算法之异同 SGD/AdaGrad/Adam 主要是对深度学习各种优化器 (从SGD到AdamW) 使用统一的框架做一次整理,本文相比于链接从源代码的角度理解这些优化器的思路。 代码来自 PyTorch1.7.0 官方教程: https://pytorch.org/docs/1.7.0/optim.html 首先我们来回顾一下各类优化算法。 深度学习优化算...