SGD +Momentum(动量)可以写成: Vt=βVt−1+(1−β)∇WtlWt+1=Wt−ηVt 这里,η经验值为0.9。 首先,分析Vt: 将Vt中所有权重梯度矩阵∇Wil的系数相加,由数学归纳法易得: 1=βt−0+(1−β)∑i=1i=tβt−i 所以,SGD + Momentum可以理解为,利用历史权重梯度矩阵Wil(i<t)和当前权重梯度...
下表列举了自然语言处理(NLP),计算机视觉(CV),推荐系统(Recommendation System,RS),强化学习(Reinforcement Learning,RL)这四个方向的主流模型使用优化器的情况,可以看出在NLP领域AdamW(AdamWeightDecayOptimizer)使用比较普遍,CV领域SGD和momentum使用比较普遍,推荐领域比较杂,强化学习领域Adam使用比较普遍。 依据计算目标函...
深度学习基础入门篇[三]:优化策略梯度下降算法:SGD、MBGD、Momentum、Adam、AdamW 1.梯度下降算法(优化器) 1.1 原理解释 如果我们定义了一个机器学习模型,比如一个三层的神经网络,那么就需要使得这个模型能够尽可能拟合所提供的训练数据。但是我们如何评价模型对于数据的拟合是否足够呢?那就需要使用相应的指标来评价它的...
参考:使用动量(Momentum)的SGD、使用Nesterov动量的SGD一. 使用动量(Momentum)的随机梯度下降虽然随机梯度下降是非常受欢迎的优化方法,但其学习过程有时会很慢。动量方法旨在加速学习(加快梯度下降的速度),特别是处理高曲率、小但一致的梯度,或是带噪声的梯度。动量算法累积了之前梯度指数级衰减的移动平均,并且继续沿该...
本文总结了SGD、MomentumNesterov、Momentum、AdaGrad...等十种优化算法,每一种算法的讲解都附有详细的公式过程以及代码实现。 无论是什么优化算法,最后都可以用一个简单的公式抽象: 是参数,而 是参数的增量,而各种优化算法的主要区别在于对 的计算不同,本文总结了下面十个优化算法的公式,以及简单的Python实现: ...
SGD 是最普通的优化器, 也可以说没有加速效果, 而 Momentum 是 SGD 的改良版, 它加入了动量原则. 后面的 RMSprop 又是 Momentum 的升级版. 而 Adam 又是 RMSprop 的升级版. 不过从这个结果中我们看到, Adam 的效果似乎比 RMSprop 要差一点. 所以说并不是越先进的优化器, 结果越佳。
相比于传统的全批量梯度下降法,SGD能够在数据样本量大时显著降低计算复杂度和存储空间需求,加速模型的收敛速度。 而动量(momentum)方法则是SGD的一种改进策略,它引入了动量的概念,模仿物体在物理世界中的惯性。在梯度更新过程中,动量方法会考虑上一步的梯度方向,并给予一定的权重,从而在一定程度上抑制噪声的影响,提高...
1. Momentum算法的提出 动量(Momentum)方法最初由B.T.Polyak在1964年提出。这一方法被用来加速梯度...
momentum能够加速SGD方法,并且能够减少震荡,如下图: 特点 加入了动量因素,SGD-M缓解了SGD在局部最优点梯度为0,无法持续更新的问题和振荡幅度过大的问题。 当局部沟壑比较深,动量加持用完了,依然会困在局部最优里来回振荡 4.NAG SGD 还有一个问题是困在局部最优的沟壑里面震荡。想象一下你走到一个盆地,四周都是...
2.Momentum 然而,SGD和MBGD这两种改进方案,都存在一定程度的震荡(频繁改变方向)。于是,以减少震荡为目的,引入“动量(Momentum)”来对算法做进一步优化。 所谓的引入动量,即更新参数时,不仅考虑当前梯度,还会累加先前的梯度/动量。 参数更新的计算公式: ...