MoDS: Model-oriented Data Selection for Instruction Tuning From Quantity to Quality: Boosting LLM Performance with Self-Guided Data Selection for Instruction Tuning(IFD) Self-Evolved Diverse Data Sampling for Efficient Instruction Tuning(DiverseEvol)这些论文提供了丰富的见解和策略,帮助你在大模型的SFT阶段...
A Survey on Data Selection for LLM Instruction Tuning What Makes Good Data for Alignment? A Comprehensive Study of Automatic Data Selection in Instruction Tuning Does Fine-Tuning LLMs on New Knowledge Encourage Hallucinations? Can LLMs learn from a single example? Smaller Language Models are capable...
第一篇工作:WHAT MAKES GOOD DATA FOR ALIGNMENT? A COMPREHENSIVE STUDY OF AUTOMATIC DATA SELECTION IN INSTRUCTION TUNING 本文提出DEITA来自动选择SFT数据微调LLAMA和Mistral模型,目的是用更小的数据量实现更好的微调效果,最终文章选择了6k SFT微调数据和10k DPO数据。 核心观点: 所有知识是从预训练阶段获得的,SFT...
通常的比例是8:1:1。 from sklearn.model_selection import train_test_split train_data, temp_data = train_test_split(data, test_size=0.2, random_state=42) valid_data, test_data = train_test_split(temp_data, test_size=0.5, random_state=42) 1. 2. 3. 4. 步骤5:加载预训练模型 使用深...
西域价:¥ 748.90/ 台未税价:¥ 662.74 (税率:13%) ¥ ? 会员价 成为西域会员 享受专属折扣>> 西域订货号:RJB024 品牌型号:巨风 BSFT-250(220V) 配送至: 陕西省延安市 预计出货日:10个工作日出货及送达时效说明 >> 最小订货量:1台 +-
model_selection import train_test_split from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense # 数据划分 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 模型构建 model = Sequential() model.add(Dense(32, ...
7.5 软件设置7.5.1 选择EXCELL2000主窗口 (EXCELL 2000 MAIN WINDOWS)中的CLASS选项,进入测井软件7.5.2 输入测井操作员的姓名,并回车确认7.5.3 进入主菜单选择测井设置 (Logging Setup),然后进入服务选择 (Service Selection),选择服务&仪器设置 (Service &Tool Configuration),若输入SRV2640建立裸眼井地层测试器的...
model_selection import train_test_split # 加载或创建数据集 data = pd.read_csv('sft_dataset.csv') # 假设已有一个CSV格式的数据集 data = data[['instruction', 'answer']] # 确保数据集包含指令和答案两列 # 数据清洗与处理 data = data.dropna() # 删除含有缺失值的行 # 划分训练集与验证集 ...
DECLARE_GLOBAL_DATA_PTR;#define pinmux(x) (&davinci_syscfg_regs->pinmux[x])/* SPI0 pin ...
The presented information is customised through timeperspective (historic, present and future) and the selection of information is divided into various layer(s), for example presentation of data from mobile units duringmeasuring, vehicles moving on the runway, selection of data from fixed sensors, ...