Paper: https://arxiv.org/abs/2409.17146 Motivation The Molmo models are super strong VLMs across all model scales, in some cases matching or exceeding the performance of GPT-4V: Having the ability to tune these models on custom datasets would be quite exciting for many vision-language applicat...
Abstract: In this paper, we propose an end-to-end prior-based three-phases supervised fine-tuned model, which is proved more competitive than traditional fine-tuning method. More specifically, our model realizes the structural disassembly and incremental guided output of educational knowledge. To thi...
sft 的核心技术:训练数据 所以,当你从 pretrain 转去做 sft,花一天时间看一下训练数据,就可以开始...
残差连接-恒等初始化:对于主model来说,adapter的模块不会非常直接的影响model的中间层或output,通过残差...
SFT是调教LLM的重要环节,旨在完成模型与期望行为规范或准则的对齐,本文主要结合SFT相关paper与近期开源模型的report,分析、整理SFT数据自动生成与筛选策略,具体细节如下表。 LLaMA2在训练时将SFT样本进行拼接以打满maxLen,不同样本之间使用special token分隔,除LLaMA2以外,DeepSeek-Moe、智谱的LongAlign也使用了类似的训练...
GPT-4 is all you need,这里的 GPT-4 不仅仅是字面意思上的 GPT-4,还可以理解为 good model 的意思,指的是利用一个效果好的模型来生产 answer。 不在乎成本,就选 GPT-4 / Claude 3,用过的人都说好; 在乎成本,就在自己的机器上部署 Qwen_72B / deepseek_MOE,部署过的人都说好; ...
该工作的前提是要求有一大批未标注的样本比如非常大的文本集(未标记样本集)、sft种子数据。然后用<response, prompt>去训练一个模型论文叫做backward model,可以看到其和sft模型恰好相反,backward model是根据response生成prompt,当训练好模型后就可以喂未标注的大规模样本生成prompt了。
If you find our work helpful in your research, please cite the following paper: @misc{zhu2024collectivesftscalinglargelanguage, title={CollectiveSFT: Scaling Large Language Models for Chinese Medical Benchmark with Collective Instructions in Healthcare}, author={Jingwei Zhu and Minghuan Tan and Min...
Model Number custom Material paper Material Paper(art paper, Grey board, CCNB) Color CMYK color & PMS Surface Glossy varnishing, UV varnished, matt finished, gold foil and so on. Logo Customized LOGO Size Customized as per request OEM Acceptd Box 4C printed Paper Box Remark Special design ...
Nvidia 前些时候的工作 Euroka 用 LLM 给机械手调了 Reward Model 解决了不少之前完成不了的任务,这就是很典型的场景——人类设计 Reward 其实也很费劲,在很多任务上,精心设计的 reward 未必有 sparse reward 效果好 [\cite{Fetch Suite white paper}]——比如 sparse reward 就不容易导致 local optimal policy...