SFT全参微调训练 更新时间:2025-01-18 GMT+08:00 查看PDF 前提条件 已上传训练代码、训练权重文件和数据集到OBS中,具体参考代码上传至OBS。 Step1 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。
Step2 修改训练超参配置 以Llama2-70b和Llama2-13b的SFT微调为例,执行脚本为0_pl_sft_70b.sh和0_pl_sft_13b.sh。 修改模型训练脚本中的超参配置,必须修改的参数如表1所示。其他超参均有默认值,可以参考表1按照实际需求修改。 表1训练超参配置说明 ...
processed_SFT全参微调任务是一个涉及多个环节的复杂过程,从选择合适的预训练模型和数据集,到具体的微调实施步骤,每一步都需要精确控制和细致的操作,通过合理的环境配置、数据加载、模型微调及训练监控,可以有效地优化模型在特定任务上的表现,考虑到计算资源的管理与模型调优策略也是实现高效微调不可忽视的方面,希望以上...
TigerBot-70B:全球新标准 | TigerBot-70B,一款具有700亿参数的多语言多任务大型语言模型,其综合性能已接近OpenAI同规模模型的96%。基于Llama-2-70b继续预训练,使用300B tokens多语言数据,该模型采用GQA, flash-attn, RoPE等前沿技术,优化了计算效率和模型性能。通过人工标注的20M指令完成数据和10K gold-set数据进行...
Step1 修改训练超参配置 以llama2-13b SFT微调为例,执行脚本 0_pl_sft_13b.sh 。 修改模型训练脚本中的超参配置,必须修改的参数如表1所示。其他超参均有默认值,可以参考
已上传训练代码、训练权重文件和数据集到SFS Turbo中。以llama2-13b SFT微调为例,执行脚本 0_pl_sft_13b.sh 。修改模型训练脚本中的超参配置,必须修改的参数如表1所示。其他超参均有默认值,可以参考表1按照实际需求修改。对于Yi系列模型、ChatGLMv3-6B和Qwen系列模型,还
SFT全参微调训练 SFT全参微调训练 前提条件 已上传训练代码、训练权重文件和数据集到SFS Turbo中。 Step1 修改训练超参配置 以llama2-13b SFT微调为例,执行脚本 0_pl_sft_13b.sh 。 修改模型训练脚本中的超参配置,必须修改的参数如表1所示。其他超参均有默认值,可以参考表1按照实际需求修改。 来自:帮助中...
SFT全参微调训练 前提条件 已上传训练代码、训练权重文件和数据集到SFS Turbo中。 Step1 修改训练超参配置 以llama2-13b SFT微调为例,执行脚本 0_pl_sft_13b.sh 。 修改模型训练脚本中的超参配置,必须修改的参数如表1所示。其他超参均有默认值,可以参考表1按照实际需求修改。
SFT全参微调训练 sh 。 修改模型训练脚本中的超参配置,必须修改的参数如表1所示。其他超参均有默认值,可以参考表1按照实际需求修改。 表1 必须修改的训练超参配置 参数 示例值 参数说明 ORIGINAL_TRAIN_DATA_PATH /home/ma-user/work/training_d 来自:帮助中心 查看更多 → 创建定时任务 项。 自动分批...
SFT全参微调训练 GeneralPretrainHandler:使用预训练的alpaca数据集。 GeneralInstructionHandler:使用微调的alpaca数据集。 MOSSMultiTurnHandler:使用微调的moss数据集。 MBS 4 表示流水线并行中一个micro batch所处理的样本量。在流水线并行 来自:帮助中心