首先介绍几篇比较重要的 seq2seq 相关的论文: [1] Cho et al., 2014 . Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation [2] Sutskever et al., 2014. Sequence …
So because you will use 75000 iterations, our sequence to sequence model will generate random 75000 pairs from our dataset.teacher_forcing_ratio = 0.5 def clacModel(model, input_tensor, target_tensor, model_optimizer, criterion): model_optimizer.zero_grad() input_length = input_tensor.size(0)...
Neural translation model While the core of the sequence-to-sequence model is constructed by the functions intensorflow/tensorflow/python/ops/seq2seq.py, there are still a few tricks that are worth mentioning that are used in our translation model inmodels/tutorials/rnn/translate/seq2seq_model.py...
Kaggle uses cookies from Google to deliver and enhance the quality of its services and to analyze traffic. Learn more OK, Got it.Sarthak Sharma · 3y ago· 65 views arrow_drop_up1 Copy & Edit1 more_vert Sequence_to_Sequence_ModelNote...
Keeping these two techniques in mind, you can then build an end-to-end sequence to sequence model that works wonderfully well. In the next section, we will go through a hands on example of the topics we have learnt and apply it on a real life problem using python. ...
:param kwargs: for GRU ''' self.p_states = atten_states self.states_len = states_len self.size = kwargs['units'] self.L2Strength = L2Strength super(AttentionGRU, self).__init__(**kwargs) def build(self, input_shape): input_dim = input_shape[-1] ...
Convert the target data to sequences using the same steps. Get strTarget = dataTrain.Target; documentsTarget = transformText(strTarget,startToken,stopToken); encTarget = wordEncoding(documentsTarget); sequencesTarget = doc2sequence(encTarget,documentsTarget,PaddingDirection="none"); Sort the sequ...
This example shows how to classify each time step of sequence data using a generic temporal convolutional network (TCN).
基本Sequence to Sequence模型描述了基本的Encoder-Decoder模型,在作为翻译模型的时候,这种基本的Encoder-Decoder模型有较大缺点,就是Encoder部分每一个输入对Decoder部分每一个输出的贡献都是一样的。下面先看一个例子[1], 在基本模型中,每一个英文单词对杰瑞都是一样的贡献,这似乎是不太合理的;也就是说 ...
_w) + softmax_b # loss函数是average negative log probability, 这里我们有现成的函数sequence_loss_by_example # 来达到这个效果。 loss = tf.nn.seq2seq.sequence_loss_by_example( [logits], [tf.reshape(self._targets, [-1])], [tf Write a Sequence to Sequence (seq2seq) Model 链接:http...