自注意力机制(Self-Attention)作为注意力机制中的一种,也被称为intra Attention(内部Attention),是大名鼎鼎的Transformer重要组成部分,今天张张将详细介绍自注意力机制(Self-Attention)。 本文目录 1 Self-Attention的概念 2 Self-Attention的原理 3 Self-Attention的作用 4 Self-Attention的问题 1 Self-Attention的概念...
Attention(Q,K,V) = softmax(\frac{QK^T}{\sqrt{d_k} } )V 这个d_k 就是k_dim,而 softmax(\frac{QK^T}{\sqrt{d_k} } ) 就是Attention Score矩阵,我们来详细看下这个矩阵的计算过程。 如图5,计算attention score的主流方式有两种,在transformer的论文中,采用的是dot-product(因为不需要额外再...
Self - Attention 顾名思义,指的不是 Target 和 Source 之间的 Attention 机制,而是 Source 内部元素之间或者 Target 内部元素之间发生的 Attention 机制,其具体计算过程是一样的,只是计算对象发生了变化而已,相当于是 Query=Key=Value,计算过程与attention一样。 (例如在Transformer中在计算权重参数时,将文字向量转...
传统的Attention机制发生在Target的元素和Source中的所有元素之间。 简单讲就是说Attention机制中的权重的计算需要Target来参与。即在Encoder-Decoder 模型中,Attention权值的计算不仅需要Encoder中的隐状态而且还需要Decoder中的隐状态。 Self-Attention: 不是输入语句和输出语句之间的Attention机制,而是输入语句内部元素之间或...
1.Attention Attention可以从纷繁复杂的输入信息中,找出对当前输出最重要的部分。一个典型的Attention包括三部分\(Q,K,V\)。 \(Q\)是Query,是输入的信息。\(key\)和\(value\)成对出现,通常是源语言、原始文本等已有的信息。通过计算\(Q\)和\(
Multi-Head Attention(多头注意力机制):通过并行运行多个Self-Attention层并综合其结果,能够同时捕捉输入序列在不同子空间中的信息,从而增强模型的表达能力。 Multi-Head Attention实际上是多个并行的Self-Attention层,每个“头”都独立地学习不同的注意力权重。
Self - Attention 顾名思义,指的不是 Target 和 Source 之间的 Attention 机制,而是 Source 内部元素之间或者 Target 内部元素之间发生的 Attention 机制,其具体计算过程是一样的,只是计算对象发生了变化而已,相当于是 Query=Key=Value,计算过程与attention一样。
传统的Attention机制发生在Target的元素和Source中的所有元素之间。 简单讲就是说Attention机制中的权重的计算需要Target来参与。即在Encoder-Decoder 模型中,Attention权值的计算不仅需要Encoder中的隐状态而且还需要Decoder中的隐状态。 Self-Attention: 不是输入语句和输出语句之间的Attention机制,而是输入语句内部元素之间或...
本文为你图解自注意力机制(Self-Attention)。 一、注意力机制和自注意力机制的区别 Attention机制与Self-Attention机制的区别: 传统的Attention机制发生在Target的元素和Source中的所有元素之间。 简单讲就是说Attention机制中的权重的计算需要Target来参与。即在Encoder-Decode...
self-attention加权求和示例图 如上图,序列的输入有三个元素input1,input2,input3, 假设我们现在要用...