1.Self-attention可以考虑全部的输入,而RNN似乎只能考虑之前的输入(左边)。但是当使用双向RNN的时候可以避免这一问题。 2.Self-attention可以容易地考虑比较久之前的输入,而RNN的最早输入由于经过了很多层网络的处理变得较难考虑。 3.Self-attention可以并行计算,而RNN不同层之间具有先后顺序。 1.Self-attention可以考虑...
Self - Attention是Transformer中最核心的思想。我们在阅读Transformer论文的过程中,最难理解的可能就是自注意力机制实现的过程和繁杂的公式。本文在Illustrated: Self-Attention这篇文章的基础上,加上了自己对Self-Attention的理解,力求通俗易懂。希望大家批评指正。 一、Self-Attention是什么? 在理解Self-Attention之...
全文基调:提起self-attention,Q K V 是绕不开的问题,之前一直在思考,Q K V 应该怎么理解,很多参考文献都会举例Q是query向量,但是这样其实并没有解释矩阵运算的核心意义。只有明白了矩阵运算的核心意义,Q K V 才有具体含义,才有意义。 1、Attention机制的公式 上面的公式就是注意力机制的核心公式,我们首先要明白...
在训练self attention的时候,实际上对于位置的信息是缺失的,没有前后的区别,上面讲的a1,a2,a3不代表输入的顺序,只是指输入的向量数量,不像rnn,对于输入有明显的前后顺序,比如在翻译任务里面,对于“机器学习”,机器学习依次输入。而self-attention的输入是同时输入,输出也是同时产生然后输出的。 如何在Self-Attention里...
本文为你图解自注意力机制(Self-Attention)。 一、注意力机制和自注意力机制的区别 Attention机制与Self-Attention机制的区别: 传统的Attention机制发生在Target的元素和Source中的所有元素之间。 简单讲就是说Attention机制中的权重的计算需要Target来参与。即在Encoder-Decode...
Self-Attention: 不是输入语句和输出语句之间的Attention机制,而是输入语句内部元素之间或者输出语句内部元素之间发生的Attention机制。 例如在Transformer中在计算权重参数时,将文字向量转成对应的KQV,只需要在Source处进行对应的矩阵操作,用不到Target中的信息。
本文为你图解自注意力机制(Self-Attention)。 一、注意力机制和自注意力机制的区别 Attention机制与Self-Attention机制的区别: 传统的Attention机制发生在Target的元素和Source中的所有元素之间。 简单讲就是说Attention机制中的权重的计算需要Target来参与。即在Encoder-Decoder 模型中,Attention权值的计算不仅需要Encoder中...
《超详细图解Self-Attention - 知乎》 O超详细图解Self-Attention #知乎##机器学习# û收藏 52 5 ñ68 评论 o p 同时转发到我的微博 按热度 按时间 正在加载,请稍候... 互联网科技博主 3 公司 北京邮电大学 Ü 简介: 北邮PRIS模式识别实验室陈老师 商务合作 QQ:128946886...
Self-Attention: 不是输入语句和输出语句之间的Attention机制,而是输入语句内部元素之间或者输出语句内部元素之间发生的Attention机制。 例如在Transformer中在计算权重参数时,将文字向量转成对应的KQV,只需要在Source处进行对应的矩阵操作,用不到Target中的信息。
一. self-attention整体逻辑 self-attention的整体结构图如图1。首先有QKV三个矩阵,这三个矩阵均由 ...